Accumulating evidence implicates the gut microbiome (GMB) in the pathogenesis and progression of Alzheimer’s disease (AD). We recently showed that the GMB regulates reactive astrocytosis and Aβ plaque accumulation in a male APPPS1-21 AD mouse model. Yet, the mechanism(s) by which GMB perturbation alters reactive astrocytosis in a manner that reduces Aβ deposition remain unknown. Here, we performed metabolomics on plasma from mice treated with antibiotics (ABX) and identified a significant increase in plasma propionate, a gut-derived short-chain fatty acid, only in male mice. Administration of sodium propionate reduced reactive astrocytosis and Aβ plaques in APPPS1-21 mice, phenocopying the ABX-induced phenotype. Astrocyte-specific RNA-Seq on ABX- and propionate-treated mice showed reduced expression of proinflammatory and increased expression of neurotrophic genes. Next, we performed flow cytometry experiments, in which we found that ABX and propionate decreased peripheral RAR-related orphan receptor-γ+ (Rorγt+) CD4+ (Th17) cells and IL-17 secretion, which positively correlated with reactive astrocytosis. Last, using an IL-17 mAb to deplete IL-17, we found that propionate reduced reactive astrocytosis and Aβ plaques in an IL-17–dependent manner. Together, these results suggest that gut-derived propionate regulates reactive astrocytosis and Aβ amyloidosis by decreasing peripheral Th17 cells and IL-17 release. Thus, propionate treatment or strategies boosting propionate production may represent novel therapeutic strategies for the treatment of AD.
Sidhanth Chandra, Jelena Popovic, Naveen K. Singhal, Elyse A. Watkins, Hemraj B. Dodiya, Ian Q. Weigle, Miranda A. Salvo, Abhirami Ramakrishnan, Zhangying Chen, Thomas Watson, Aashutosh Shetti, Natalie Piehl, Xiaoqiong Zhang, Leah Cuddy, Katherine R. Sadleir, Steven J. Schwulst, Murali Prakriya, David Gate, Sangram S. Sisodia, Robert Vassar
Stem-like T cells selectively contribute to autoimmunity, but the activities that promote their pathogenicity are incompletely understood. Here, we identify the transcription coregulator OCA-B as a driver of the pathogenic maturation of stem-like CD4+ T cells to promote autoimmune demyelination. Using 2 human multiple sclerosis (MS) datasets, we show that POU2AF1, the gene encoding OCA-B, is elevated in CD4+ T cells from patients with MS. We show that T cell–intrinsic OCA-B loss protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to viral CNS infection. In EAE models driven by antigen re-encounter, OCA-B deletion nearly eliminates CNS infiltration, proinflammatory cytokine production, and clinical disease. OCA-B–expressing CD4+ T cells of mice primed with autoantigen express an encephalitogenic gene program and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B loss protects mice specifically at relapse. During remission, OCA-B promotes the expression of Tcf7, Slamf6, and Sell in proliferating CNS T cell populations. At relapse time points, OCA-B loss results in both the accumulation of an immunomodulatory CD4+ T cell population expressing Ccr9 and Bach2, and loss of proinflammatory gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic CD4+ T cells.
Erik P. Hughes, Amber R. Syage, Elnaz Mirzaei Mehrabad, Thomas E. Lane, Benjamin T. Spike, Dean Tantin
The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). The pleckstrin 2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we reveal peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in patients with MPN and in a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2-mutated erythroid and myeloid proliferation in an induced pluripotent stem cell–derived human bone marrow organoid model. Our findings reveal PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negative regulation of p53, thus providing a target and opportunity for drug repurposing using cyclosporin A to treat MPNs.
Pan Wang, Xu Han, Kehan Ren, Ermin Li, Honghao Bi, Inci Aydemir, Madina Sukhanova, Yijie Liu, Jing Yang, Peng Ji
Complement activation is a relevant driver in the pathomechanisms of vasculitis. The involved proteins in the interaction between endothelia, complement, and platelets in these conditions are only partially understood. Thrombospondin-1 (TSP-1), found in platelet α-granules and released from activated endothelial cells, interacts with factor H (FH) and vWF. However, to our knowledge, direct regulatory interaction with the complement cascade has not yet been described. Our study shows that TSP-1 is a potent, FH-independent inhibitor of the alternative complement pathway. TSP-1 binds to complement proteins and inhibits cleavage of C3 and C5 and the formation of the membrane attack complex. We validated complement-regulatory function in blood samples from patients with primary complement defects. The physiological relevance of TSP-1 was demonstrated in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV) by significantly enhanced TSP-1 staining in glomerular lesions and increased complement activity and NETosis after TSP-1 deficiency in an in vitro and in vivo model of AAV. The complement-inhibiting function of TSP-1 represents an important mechanism in the interaction of endothelia and complement. In particular, the interplay between released TSP-1 and the complement system locally, especially on surfaces, influences the balance between complement activation and inhibition and may be relevant in various vascular diseases.
Swagata Konwar, Sophie Schroda, Manuel Rogg, Jessika Kleindienst, Eva L. Decker, Martin Pohl, Barbara Zieger, Jens Panse, Hong Wang, Robert Grosse, Christoph Schell, Sabine Vidal, Xiaobo Liu, Christian Gorzelanny, Todor Tschongov, Karsten Häffner
Anemia is the primary clinical manifestation of myelodysplastic syndromes (MDSs), but the molecular pathogenesis of ineffective erythropoiesis remains incompletely understood. Luspatercept, an activin receptor 2B (ACVRIIB-Fc) ligand trap, has been approved to treat anemia; however, its molecular mechanism of action is unclear. We found that activin receptor 2B (ACVR2B), its ligand growth and differentiation factor 11 (GDF11), and an effector, SMAD2, are upregulated in samples of patients with MDS. GDF11 inhibited human erythropoiesis in vitro and caused anemia in zebrafish, effects that were abrogated by luspatercept. Upon GDF11 stimulation of human erythroid progenitors, SMAD2 binding occurred in the erythroid regulatory regions, including at the GATA1 intron. Intronic SMAD2-binding led to skipping of exon 2 of GATA1, resulting in a shorter, hypomorphic isoform (GATA1s). CRISPR deletion of the SMAD2-binding intronic region decreased GATA1s production upon GDF11 stimulation. Expression of GATA1s in a mouse model led to anemia, rescued by a murine ActRIIB-Fc (RAP-536). Finally, RNA-Seq analysis of samples from the phase 3 MEDALIST trial revealed that responders to luspatercept had a higher proportion of GATA1s compared with nonresponders. Moreover, the increase in RBCs after treatment was linked to a relative decrease in GATA1s isoforms. Our study indicates that GDF11-mediated SMAD2 activation results in an increase in functionally impaired GATA1 isoforms, consequently contributing to anemia and influencing responses to luspatercept in MDS.
Srinivas Aluri, Te Ling, Ellen Fraint, Samarpana Chakraborty, Kevin Zhang, Aarif Ahsan, Leah Kravets, Gowri Poigaialwar, Rongbao Zhao, Kith Pradhan, Anitria Cotton, Kimo Bachiashvili, Jung-In Yang, Anjali Budhathoki, Beamon Agarwal, Shanisha Gordon Mitchell, Milagros Carbajal, Srabani Sahu, Jacqueline Boultwood, Andrea Pellagatti, Ulrich Steidl, Amittha Wickrema, Satish Nandakumar, Aditi Shastri, Rajasekhar N.V.S. Suragani, Teresa V. Bowman, John D. Crispino, Sadanand Vodala, Amit Verma
Lymphocyte activation gene 3 (LAG3) is a coinhibitory receptor expressed by various immune cells. Although the immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role after organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3–/– recipients rapidly rejected MHC-mismatched renal allografts that were spontaneously accepted by WT recipients, with graft histology characteristic of antibody-mediated rejection. Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3–/– recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3–/– recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3–/– recipients, suggesting that LAG3 also regulates the effector stage of antibody-mediated rejection. These findings identified LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for antibody-mediated rejection prevention and treatment.
Michael Nicosia, Ran Fan, Juyeun Lee, Gabriella All, Victoria Gorbacheva, José I. Valenzuela, Yosuke Yamamoto, Ashley Beavers, Nina Dvorina, William M. Baldwin III, Eduardo Chuluyan, Motoo Araki, Brian T. Gaudette, Robert L. Fairchild, Booki Min, Anna Valujskikh
Germinal center (GC) B cells are pivotal in establishing a robust humoral immune response and long-term serological immunity while maintaining antibody self-tolerance. GC B cells rely on autophagy for antigen presentation and homeostatic maintenance. However, these functions, primarily associated with the light zone, cannot explain the spatiotemporal autophagy upregulation in the dark zone of GCs. Here, combining imaging, molecular, and genomic approaches, we defined a functional mechanism controlling chromatin accessibility in GC B cells during their dark zone transition. This mechanism links autophagy and nuclear lamin B1 dynamics with their downstream effects, including somatic hypermutation and antibody affinity maturation. Moreover, the autophagy–lamin B1 axis is highly active in the aberrant ectopic GCs in the salivary glands of Sjögren’s disease, defining its role in autoimmunity.
Marta C. Sallan, Filip Filipsky, Christina H. Shi, Elena Pontarini, Manuela Terranova-Barberio, Gordon Beattie, Andrew Clear, Michele Bombardieri, Kevin Y. Yip, Dinis Pedro Calado, Mark S. Cragg, Sonya James, Mathew Carter, Jessica Okosun, John G. Gribben, Tanya Klymenko, Andrejs Braun
Synovial sarcoma is an aggressive soft-tissue cancer driven by the chimeric SS18::SSX fusion oncoprotein, which disrupts chromatin remodeling by combining two antagonistic transcriptional regulators. SS18 participates in BAF complexes that open chromatin, while the SSX genes are cancer-testis antigens that interface with chromatin decorated with monoubiquitinated histone H2A placed by polycomb repressive complex activity. Because KDM2B brings polycomb repressive complex to unmethylated CpG islands, it is plausible that methylation directly determines the distribution of SS18::SSX to target loci. Given that synovial sarcoma is also characterized by a peculiarly low DNA hypomethylation profile, we hypothesized that further disturbance of DNA methylation would have a negative impact on synovial sarcoma growth. DNMT1 disruption by CRISPR/Cas9 targeting or pharmacological inhibition with cytidine analogs 5-aza-2′-deoxycytidine (decitabine) and 5-azacytidine led to decreased genome-wide methylation, redistribution of SS18::SSX, and altered gene expression profiles, most prominently including upregulation of tumor suppressor genes, immune-related genes, and mesenchymal differentiation-related genes. These drugs suppressed growth of synovial sarcoma cell lines and drove cytoreduction in mouse genetic models. DNMT1 inhibitors, already approved for treating myelodysplastic syndromes, warrant further clinical investigation for synovial sarcoma as repurposed, targeted treatments exploiting a vulnerability in the intrinsic biology of this cancer.
Nobuhiko Hasegawa, Nezha S. Benabdallah, Kyllie Smith-Fry, Li Li, Sarah McCollum, Jinxiu Li, Caelen A. Jones, Lena Wagner, Vineet Dalal, Viola Golde, Anastasija Pejkovska, Lara Carroll, Malay Haldar, Seth M. Pollack, Scott W. Lowe, Torsten O. Nielsen, Ana Banito, Kevin B. Jones
Phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, is a common cause of intellectual disability. However, the mechanisms by which elevated Phe levels cause cognitive impairment remain unclear. Here, we show that submillimolar Phe perturbs synaptic plasticity through the hyperactivation of GluN2B-containing NMDARs. PahEnu2 PKU model mice exhibited submillimolar and supramillimolar concentrations of Phe in the cerebrospinal fluid (CSF) and serum, respectively. l-Phe produced concentration-dependent bidirectional effects on NMDA-induced currents, without affecting synaptic NMDA receptors (NMDARs) in hippocampal CA1 neurons. l-Phe-induced hyperactivation of extrasynaptic GluN2B resulted in activity-dependent downregulation of AMPA receptors during burst or sustained synaptic activity. Administration of l-Phe in mice decreased neural activity and impaired memory, which were blocked by pretreatment with GluN2B inhibitors. Furthermore, pharmacological and virus-mediated suppression of GluN2B reversed the impaired learning in PahEnu2 mice. Collectively, these results suggest the concentration of Phe in the CSF of patients with PKU perturbs extrasynaptic NMDARs and synaptic plasticity and that suppression of GluN2B may have the potential to improve cognitive function in patients with PKU.
Woo Seok Song, Young Sook Kim, Young-Soo Bae, Sang Ho Yoon, Jae Min Lim, Myoung-Hwan Kim
The ATP6V0A4 gene encodes the a4 subunit of vacuolar H+-ATPase (V-ATPase), which mediates hydrogen ion transport across the membrane. Previous studies have suggested that mutations in ATP6V0A4 consistently result in a loss of function, impairing the hydrogen ion transport efficacy of V-ATPase and leading to distal renal tubular acidosis and sensorineural hearing loss. Here, we identified a 32-year-old male patient and his father, both of whom harbored a heterozygous ATP6V0A4 p.V512L mutation and exhibited hypochloremic metabolic alkalosis, acidic urine, and hypokalemia. Through a series of protein structural analyses and functional experiments, the V512L mutation was confirmed as a gain-of-function mutation in the ATP6V0A4 gene. V512-a4 increased a4 subunit expression abundance by enhancing V512L-a4 stability and reducing its degradation, which in turn potentiated the capacity of V-ATPase to acidify the tubular lumen, leading to acidic urine and metabolic alkalosis. Through mutant V512L-a4 subunit structure-based virtual and experimental screening, we identified F351 (C25H26FN3O2S), a small-molecule inhibitor specifically targeting the V512L-a4 mutant. In conclusion, we identified a gain-of-function mutation in the ATP6V0A4 gene, broadening its phenotypic and mutational spectrum, and we provide valuable insights into potential therapeutic approaches for diseases associated with ATP6V0A4 mutations.
Si-qi Peng, Qian-qian Wu, Wan-yi Wang, Yi-Lin Zhang, Rui-ning Zhou, Jun Liao, Jin-xuan Wei, Yan Yang, Wen Shi, Jun-lan Yang, Xiao-xu Wang, Zhi-yuan Wei, Jia-xuan Sun, Lu Huang, Hong Fan, Hui Cai, Cheng-kun Wang, Xin-hua Li, Ting-song Li, Bi-cheng Liu, Xiao-liang Zhang, Bin Wang
No posts were found with this tag.