Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Ophthalmology

  • 79 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Next →
Angiopoietin-1 is required for Schlemm’s canal development in mice and humans
Benjamin R. Thomson, … , Terri L. Young, Susan E. Quaggin
Benjamin R. Thomson, … , Terri L. Young, Susan E. Quaggin
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI95545.
View: Text | PDF

Angiopoietin-1 is required for Schlemm’s canal development in mice and humans

  • Text
  • PDF
Abstract

Primary congenital glaucoma (PCG) is a leading cause of blindness in children worldwide and is caused by developmental defects in 2 aqueous humor outflow structures, Schlemm’s canal (SC) and the trabecular meshwork. We previously identified loss-of-function mutations in the angiopoietin (ANGPT) receptor TEK in families with PCG and showed that ANGPT/TEK signaling is essential for SC development. Here, we describe roles for the major ANGPT ligands in the development of the aqueous outflow pathway. We determined that ANGPT1 is essential for SC development, and that Angpt1-knockout mice form a severely hypomorphic canal with elevated intraocular pressure. By contrast, ANGPT2 was dispensable, although mice deficient in both Angpt1 and Angpt2 completely lacked SC, indicating that ANGPT2 compensates for the loss of ANGPT1. In addition, we identified 3 human subjects with rare ANGPT1 variants within an international cohort of 284 PCG patients. Loss of function in 2 of the 3 patient alleles was observed by functional analysis of ANGPT1 variants in a combined in silico, in vitro, and in vivo approach, supporting a causative role for ANGPT1 in disease. By linking ANGPT1 with PCG, these results highlight the importance of ANGPT/TEK signaling in glaucoma pathogenesis and identify a candidate target for therapeutic development.

Authors

Benjamin R. Thomson, Tomokazu Souma, Stuart W. Tompson, Tuncer Onay, Krishnakumar Kizhatil, Owen M. Siggs, Liang Feng, Kristina N. Whisenhunt, Tammy L. Yanovitch, Luba Kalaydjieva, Dimitar N. Azmanov, Simone Finzi, Christine E. Tanna, Alex W. Hewitt, David A. Mackey, Yasmin S. Bradfield, Emmanuelle Souzeau, Shari Javadiyan, Janey L. Wiggs, Francesca Pasutto, Xiaorong Liu, Simon W.M. John, Jamie E. Craig, Jing Jin, Terri L. Young, Susan E. Quaggin

×

Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury
Izhar Livne-Bar, … , John G. Flanagan, Jeremy M. Sivak
Izhar Livne-Bar, … , John G. Flanagan, Jeremy M. Sivak
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI77398.
View: Text | PDF

Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury

  • Text
  • PDF
Abstract

Astrocytes perform critical non–cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.

Authors

Izhar Livne-Bar, Jessica Wei, Hsin-Hua Liu, Samih Alqawlaq, Gah-Jone Won, Alessandra Tuccitto, Karsten Gronert, John G. Flanagan, Jeremy M. Sivak

×

Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy
Weiquan Zhu, … , Shannon J. Odelberg, Dean Y. Li
Weiquan Zhu, … , Shannon J. Odelberg, Dean Y. Li
Published October 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91770.
View: Text | PDF

Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy

  • Text
  • PDF
Abstract

The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs — ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.

Authors

Weiquan Zhu, Dallas S. Shi, Jacob M. Winter, Bianca E. Rich, Zongzhong Tong, Lise K. Sorensen, Helong Zhao, Yi Huang, Zhengfu Tai, Tara M. Mleynek, Jae Hyuk Yoo, Christine Dunn, Jing Ling, Jake A. Bergquist, Jackson R. Richards, Amanda Jiang, Lisa A. Lesniewski, M. Elizabeth Hartnett, Diane M. Ward, Alan L. Mueller, Kirill Ostanin, Kirk R. Thomas, Shannon J. Odelberg, Dean Y. Li

×

Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma
Jaeryung Kim, … , Guillermo Oliver, Gou Young Koh
Jaeryung Kim, … , Guillermo Oliver, Gou Young Koh
Published September 18, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94668.
View: Text | PDF

Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma

  • Text
  • PDF
Abstract

Primary open-angle glaucoma (POAG) is often caused by elevated intraocular pressure (IOP), which arises due to increased resistance to aqueous humor outflow (AHO). Aqueous humor flows through Schlemm’s canal (SC), a lymphatic-like vessel encircling the cornea, and via intercellular spaces of ciliary muscle cells. However, the mechanisms underlying increased AHO resistance are poorly understood. Here, we demonstrate that signaling between angiopoietin (Angpt) and the Angpt receptor Tie2, which is critical for SC formation, is also indispensable for maintaining SC integrity during adulthood. Deletion of Angpt1/Angpt2 or Tie2 in adult mice severely impaired SC integrity and transcytosis, leading to elevated IOP, retinal neuron damage, and impairment of retinal ganglion cell function, all hallmarks of POAG in humans. We found that SC integrity is maintained by interconnected and coordinated functions of Angpt-Tie2 signaling, AHO, and Prox1 activity. These functions diminish in the SC during aging, leading to impaired integrity and transcytosis. Intriguingly, Tie2 reactivation using a Tie2 agonistic antibody rescued the POAG phenotype in Angpt1/Angpt2-deficient mice and rejuvenated the SC in aged mice. These results indicate that the Angpt-Tie2 system is essential for SC integrity. The impairment of this system underlies POAG-associated pathogenesis, supporting the possibility that Tie2 agonists could be a therapeutic option for glaucoma.

Authors

Jaeryung Kim, Dae-Young Park, Hosung Bae, Do Young Park, Dongkyu Kim, Choong-kun Lee, Sukhyun Song, Tae-Young Chung, Dong Hui Lim, Yoshiaki Kubota, Young-Kwon Hong, Yulong He, Hellmut G. Augustin, Guillermo Oliver, Gou Young Koh

×

Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma
Abram Akopian, … , Suresh Viswanathan, Stewart A. Bloomfield
Abram Akopian, … , Suresh Viswanathan, Stewart A. Bloomfield
Published June 12, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91948.
View: Text | PDF

Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma

  • Text
  • PDF
Abstract

The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma.

Authors

Abram Akopian, Sandeep Kumar, Hariharasubramanian Ramakrishnan, Kaushambi Roy, Suresh Viswanathan, Stewart A. Bloomfield

×

Photopharmacological control of bipolar cells restores visual function in blind mice
Laura Laprell, … , Dirk Trauner, Russell N. Van Gelder
Laura Laprell, … , Dirk Trauner, Russell N. Van Gelder
Published June 5, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92156.
View: Text | PDF

Photopharmacological control of bipolar cells restores visual function in blind mice

  • Text
  • PDF
Abstract

Photopharmacological control of neuronal activity using synthetic photochromic ligands, or photoswitches, is a promising approach for restoring visual function in patients suffering from degenerative retinal diseases. Azobenzene photoswitches, such as AAQ and DENAQ, have been shown to restore the responses of retinal ganglion cells to light in mouse models of retinal degeneration but do not recapitulate native retinal signal processing. Here, we describe diethylamino-azo-diethylamino (DAD), a third-generation photoswitch that is capable of restoring retinal ganglion cell light responses to blue or white light. In acute brain slices of murine layer 2/3 cortical neurons, we determined that the photoswitch quickly relaxes to its inactive form in the dark. DAD is not permanently charged, and the uncharged form enables the photoswitch to rapidly and effectively cross biological barriers and thereby access and photosensitize retinal neurons. Intravitreal injection of DAD restored retinal light responses and light-driven behavior to blind mice. Unlike DENAQ, DAD acts upstream of retinal ganglion cells, primarily conferring light sensitivity to bipolar cells. Moreover, DAD was capable of generating ON and OFF visual responses in the blind retina by utilizing intrinsic retinal circuitry, which may be advantageous for restoring visual function.

Authors

Laura Laprell, Ivan Tochitsky, Kuldeep Kaur, Michael B. Manookin, Marco Stein, David M. Barber, Christian Schön, Stylianos Michalakis, Martin Biel, Richard H. Kramer, Martin P. Sumser, Dirk Trauner, Russell N. Van Gelder

×

Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome
Alicia A. Nugent, … , Long Cheng, Elizabeth C. Engle
Alicia A. Nugent, … , Long Cheng, Elizabeth C. Engle
Published March 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI88502.
View: Text | PDF

Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome

  • Text
  • PDF
Abstract

Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.

Authors

Alicia A. Nugent, Jong G. Park, Yan Wei, Alan P. Tenney, Nicole M. Gilette, Michelle M. DeLisle, Wai-Man Chan, Long Cheng, Elizabeth C. Engle

×

VEGF regulates local inhibitory complement proteins in the eye and kidney
Lindsay S. Keir, … , Moin A. Saleem, Martin Friedlander
Lindsay S. Keir, … , Moin A. Saleem, Martin Friedlander
Published December 5, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86418.
View: Text | PDF

VEGF regulates local inhibitory complement proteins in the eye and kidney

  • Text
  • PDF
Abstract

Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.

Authors

Lindsay S. Keir, Rachel Firth, Lyndsey Aponik, Daniel Feitelberg, Susumu Sakimoto, Edith Aguilar, Gavin I. Welsh, Anna Richards, Yoshihiko Usui, Simon C. Satchell, Valeryia Kuzmuk, Richard J. Coward, Jonathan Goult, Katherine R. Bull, Ruchi Sharma, Kapil Bharti, Peter D. Westenskow, Iacovos P. Michael, Moin A. Saleem, Martin Friedlander

×

Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity
Tomokazu Souma, … , Susan E. Quaggin, Terri L. Young
Tomokazu Souma, … , Susan E. Quaggin, Terri L. Young
Published June 6, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85830.
View: Text | PDF

Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity

  • Text
  • PDF
Abstract

Primary congenital glaucoma (PCG) is a devastating eye disease and an important cause of childhood blindness worldwide. In PCG, defects in the anterior chamber aqueous humor outflow structures of the eye result in elevated intraocular pressure (IOP); however, the genes and molecular mechanisms involved in the etiology of these defects have not been fully characterized. Previously, we observed PCG-like phenotypes in transgenic mice that lack functional angiopoietin-TEK signaling. Herein, we identified rare TEK variants in 10 of 189 unrelated PCG families and demonstrated that each mutation results in haploinsufficiency due to protein loss of function. Multiple cellular mechanisms were responsible for the loss of protein function resulting from individual TEK variants, including an absence of normal protein production, protein aggregate formation, enhanced proteasomal degradation, altered subcellular localization, and reduced responsiveness to ligand stimulation. Further, in mice, hemizygosity for Tek led to the formation of severely hypomorphic Schlemm’s canal and trabecular meshwork, as well as elevated IOP, demonstrating that anterior chamber vascular development is sensitive to Tek gene dosage and the resulting decrease in angiopoietin-TEK signaling. Collectively, these results identify TEK mutations in patients with PCG that likely underlie disease and are transmitted in an autosomal dominant pattern with variable expressivity.

Authors

Tomokazu Souma, Stuart W. Tompson, Benjamin R. Thomson, Owen M. Siggs, Krishnakumar Kizhatil, Shinji Yamaguchi, Liang Feng, Vachiranee Limviphuvadh, Kristina N. Whisenhunt, Sebastian Maurer-Stroh, Tammy L. Yanovitch, Luba Kalaydjieva, Dimitar N. Azmanov, Simone Finzi, Lucia Mauri, Shahrbanou Javadiyan, Emmanuelle Souzeau, Tiger Zhou, Alex W. Hewitt, Bethany Kloss, Kathryn P. Burdon, David A. Mackey, Keri F. Allen, Jonathan B. Ruddle, Sing-Hui Lim, Steve Rozen, Khanh-Nhat Tran-Viet, Xiaorong Liu, Simon John, Janey L. Wiggs, Francesca Pasutto, Jamie E. Craig, Jing Jin, Susan E. Quaggin, Terri L. Young

×

Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer
Jingxing Ou, … , Wei Li, Paul A. Sieving
Jingxing Ou, … , Wei Li, Paul A. Sieving
Published June 22, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI81380.
View: Text | PDF

Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

  • Text
  • PDF
Abstract

Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology.

Authors

Jingxing Ou, Camasamudram Vijayasarathy, Lucia Ziccardi, Shan Chen, Yong Zeng, Dario Marangoni, Jodie G. Pope, Ronald A. Bush, Zhijian Wu, Wei Li, Paul A. Sieving

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Next →
Delivering protection for photoreceptors
Leah Byrne and colleagues reveal that the 2 isoforms of rod-derived cone viability factor differentially protect rod and cone photoreceptors…
Published November 21, 2014
Scientific Show StopperOphthalmology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts