N6-methyladenosine (m6A), the most predominant RNA modification in humans, participates in various fundamental and pathological bioprocesses. Dynamic manipulation of m6A deposition in the transcriptome is critical for cancer progression, while how this regulation is achieved remains understudied. Here, we report that in prostate cancer (PCa), Polycomb group (PcG) protein Enhancer of Zeste Homolog 2 (EZH2) exerts an additional function in m6A regulation via its enzymatic activity. Mechanistically, EZH2 methylates and stabilizes FOXA1 proteins from degradation, which in turn facilitates the transcription of m6A reader YTHDF1. Through activating an m6A autoregulation pathway, YTHDF1 enhances the translation of METTL14 and WTAP, two critical components of the m6A methyltransferase complex (MTC), and thereby upregulates the global m6A level in PCa cells. We further demonstrate that inhibiting the catalytic activity of EZH2 suppresses the translation process globally through targeting the YTHDF1-m6A axis. By disrupting both the expression and interaction of key m6A MTC subunits, combinational treatment of EZH2 degrader MS8815 and m6A inhibitor STM2457 mitigates prostate tumor growth synergistically. Together, our study decodes a previously hidden interrelationship between EZH2 and mRNA modification, which may be leveraged to advance the EZH2-targeting curative strategies in cancer.
Yang Yi, Joshua Fry, Chaehyun Yum, Rui Wang, Siqi Wu, Sharath Narayan, Qi Liu, Xingxing Zhang, Htoo Zarni Oo, Ning Xie, Yanqiang Li, Xinlei Gao, Xufen Yu, Xiaoping Hu, Qiaqia Li, Kemal Keseroglu, Ertuğrul M. Özbudak, Sarki A. Abdulkadir, Kaifu Chen, Jian Jin, Jonathan C. Zhao, Xuesen Dong, Daniel Arango, Rendong Yang, Qi Cao
Resistance to genotoxic therapies remains a major contributor to tumor recurrence and treatment failure, yet the mechanisms by which cancer cells escape these therapies through DNA damage response (DDR) activation are not fully understood. Here, we identify a DDR regulatory pathway in which glycogen synthase kinase 3 β (GSK3B), a multifunctional serine/threonine kinase, governs DNA double-strand break (DSB) repair pathway choice by phosphorylating 53BP1 at threonine 334 (T334) — a site distinct from canonical ATM targets. This phosphorylation event disrupts 53BP1’s interaction with nonhomologous end joining (NHEJ) effectors PTIP and RIF1, promoting their dissociation from DSBs and inhibiting 53BP1-driven NHEJ. Simultaneously, T334 phosphorylation facilitates the recruitment of CtIP and RPA32 for DNA end resection and promotes homologous recombination (HR) by enabling BRCA1 and RAD51 loading. Notably, the phospho-deficient T334A mutant of 53BP1, unlike 53BP1 loss, accumulates aberrantly at DSBs along with PTIP/RIF1, impairs end resection, and suppresses HR activity. Importantly, both genetic and pharmacologic disruption of the GSK3B–53BP1 axis sensitizes tumors to PARP inhibitors (PARPi) independently of BRCA1 status. Together, these findings reveal a GSK3B-dependent mechanism that regulates DSB repair pathway choice and provide a rationale for targeting this axis to enhance PARPi efficacy in solid tumors regardless of BRCA1 status.
Heba S. Allam, Scarlett Acklin-Wehnert, Ratan Sadhukhan, Mousumi Patra, Fen Xia
Macrophage-mediated phagocytosis plays a critical role in the elimination of cancer cells and shaping antitumor immunity. However, the tumor-intrinsic pathways that regulate cancer cell sensitivity to macrophage-mediated phagocytosis remain poorly defined. In this study, we performed a genome-wide CRISPR screen in murine pancreatic cancer cells cocultured with primary macrophages and identified that disruption of the tumor-intrinsic pyrimidine synthesis pathway enhances phagocytosis. Mechanistically, we discovered that macrophages inhibit the pyrimidine salvage pathway in tumor cells by upregulating Upp1-mediated uridine degradation through cytokines TNF-α and IL-1. This shift increased tumor cells’ reliance on de novo pyrimidine synthesis. As a result, tumor cells with impaired de novo pyrimidine synthesis showed depleted UMP and displayed enhanced exposure of phosphatidylserine (PtdSer), a major “eat-me” signal, thereby promoting macrophage-mediated phagocytosis. In multiple pancreatic cancer models, Cad-deficient tumors exhibited markedly reduced tumor burden with increased levels of phagocytosis by macrophages. Importantly, the Cad-mediated suppression of pancreatic cancer was dependent on TAMs and cytokines IL-1 and TNF-α. Pharmacological inhibition of DHODH, which blocks de novo pyrimidine synthesis, similarly decreased tumor burden with enhanced phagocytosis in pancreatic cancer models. These findings highlight the critical role of the tumor-intrinsic pyrimidine synthesis pathway in modulating macrophage-mediated antitumor immunity, with potential therapeutic implications.
Jie Zhao, Xinghao Li, Xinyu Li, Pengfei Ren, Yilan Wu, Hao Gong, Lijian Wu, Junran Huang, Saisai Wang, Ziwei Guo, Mo Chen, Zexian Zeng, Deng Pan
William Ang, Travis D. Kerr, Ananya Kodiboyena, Cristina Valero, Joris L. Vos, Vladimir Makarov, Alex A. Adjei, Luc G.T. Morris, Stephanie L. Schmit, Natalie L. Silver, Sujata Patil, Daniel J. McGrail
Dalin Zhang, Chun-Lung Chiu, Fernando Jose Garcia Marques, Abel Bermudez, Christian R. Hoerner, Nicholas Hadi, Elise Wang, Thomas J. Metzner, Ludimila Trabanino, John T. Leppert, Hongjuan Zhao, Robert Tibshirani, Alice C. Fan, Sharon J. Pitteri, James D. Brooks
CAR-T therapy has led to significant improvements in patient survival. However, a subset of patients experience high-grade toxicities, including cytokine release syndrome (CRS) and immune cell-associated hematological toxicity (ICAHT). We utilized IL-2Rα knockout mice to model toxicities with elevated levels of IL6, IFNγ, and TNFα and increased M1-like macrophages. Onset of CRS was accompanied by a reduction in peripheral blood neutrophils due to disruption of bone marrow neutrophil homeostasis characterized by an increase in apoptotic neutrophils and a decrease in proliferative and mature neutrophils. Both non-tumor-bearing and Eμ-ALL tumor-bearing mice recapitulated the co-occurrence of CRS and neutropenia. IFNγ-blockade alleviated CRS and neutropenia without affecting CAR-T efficacy. Mechanistically, a Th1-Th17 imbalance was observed to drive co-occurrence of CRS and neutropenia in an IFNγ-dependent manner leading to decreased IL-17A and G-CSF, neutrophil production, and neutrophil survival. In patients, we observed an increase in the IFNγ-to-IL-17A ratio in the peripheral blood during high-grade CRS and neutropenia. We have uncovered a biological basis for ICAHT and provide support for the use of IFNγ-blockade to reduce both CRS and neutropenia.
Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila
The E3 ligase SPOP plays a context-dependent role in cancer by targeting specific cellular proteins for degradation, thereby influencing cell behavior. However, its role in tumor immunity remains largely unexplored. In this study, we revealed that SPOP targeted the innate immune sensor STING for degradation in a CK1γ phosphorylation-dependent manner to promote melanoma growth. Stabilization of STING by escaping SPOP-mediated degradation enhanced anti-tumor immunity by increasing IFNβ production and ISG expression. Notably, small-molecule SPOP inhibitors not only blocked STING recognition by SPOP, but also acted as molecular glues, redirecting SPOP to target neo-substrates such as CBX4 for degradation. This CBX4 degradation led to increased DNA damage, which in turn activated STING and amplified innate immune responses. In a xenografted melanoma B16 tumor model, single-cell RNA-seq analysis demonstrated that SPOP inhibition induced the infiltration of immune cells associated with anti-PD1 responses. Consequently, SPOP inhibitors synergized with immune checkpoint blockade to suppress B16 tumor growth in syngeneic murine models and enhanced the efficacy of CD19-CAR-T therapy. Our findings highlight a molecular glue degrader property of SPOP inhibitors, with potential implications for other E3 ligase-targeting small molecules designed to disrupt protein-protein interactions.
Zhichuan Zhu, Xin Zhou, Max Xu, Jianfeng Chen, Kevin C. Robertson, Gatphan N. Atassi, Mark G. Woodcock, Allie C. Mills, Laura E. Herring, Gianpietro Dotti, Pengda Liu
Liver metastases are relatively resistant to checkpoint blockade immunotherapy. The hepatic tissue has distinctive features including high numbers of NK cells. It was therefore important to conduct in depth single-cell analysis of NK cells in colorectal cancer liver metastases (CRLMs) with the effort to dissect their diversity and to identify candidate therapeutic targets. By combining unbiased single-cell transcriptomic with multiparametric flow cytometry analysis, we identified an abundant family of intrahepatic CD56Bright NK cells in CRLMs endowed with anti-tumor functions resulting from specific transcriptional liver programs. Intrahepatic CD56Bright and CD56Dim NK lymphocytes expressed unique transcription factors (IRF8, TOX2), high level of chemokines, and targetable immune checkpoints (ICs), including CXCR4 and the IL-1 receptor family member IL-1R8. CXCR4 pharmacological blocking and an anti-IL-1R8 mAb enhanced the effector function of CRLM NK cells. Targeting the diversity of liver NK cells and their distinct immune-checkpoint repertoires is key to optimize the current immune-therapy protocols in CRLM.
Joanna Mikulak, Domenico Supino, Paolo Marzano, Sara Terzoli, Roberta Carriero, Valentina Cazzetta, Rocco Piazza, Elena Bruni, Paolo Kunderfranco, Alessia Donato, Sarah Natalia Mapelli, Roberto Garuti, Silvia Carnevale, Francesco Scavello, Elena Magrini, Jelena Zeleznjak, Clelia Peano, Matteo Donadon, Guido Costa, Guido Torzilli, Alberto Mantovani, Cecilia Garlanda, Domenico Mavilio
Infiltration of T-cell acute lymphoblastic leukemia (T-ALL) into the meninges worsens prognosis, underscoring the need to understand mechanisms driving meningeal involvement. Here, we show that T-ALL cells expressing CXCR3 exploit normal T-cell function to infiltrate the inflamed meninges. CXCR3 deletion hampered disease progression and extramedullary dissemination by reducing leukemic cell proliferation and migration. Conversely, forced expression of CXCR3 facilitated T-ALL trafficking to the meninges. We identified the ubiquitin-specific protease 7 as a key regulator of CXCR3 protein stability in T-ALL. Furthermore, we discovered elevated levels of CXCL10, a CXCR3 ligand, in the cerebrospinal fluid from T-ALL patients and leukemia-bearing mice. Our studies demonstrate that meningeal stromal cells, specifically pericytes and fibroblasts, induce CXCL10 expression in response to leukemia, and that loss of CXCL10 attenuated T-ALL influx into the meninges. Moreover, we report that leukemia-derived proinflammatory cytokines, TNFα, IL27 and IFNγ, induced CXCL10 in the meningeal stroma. Pharmacological inhibition or deletion of CXCR3 or CXCL10 reduced T-ALL cell migration and adhesion to meningeal stromal cells. Finally, we reveal that CXCR3 and CXCL10 upregulated VLA-4/VCAM-1 signaling, promoting cell-cell adhesion and thus T-ALL retention in the meninges. Our findings highlight the pivotal role of CXCR3-CXCL10 signaling in T-ALL progression and meningeal colonization.
Nitesh D. Sharma, Esra'a Keewan, Wojciech Ornatowski, Silpita Paul, Monique Nysus, Christopher C. Barnett, Julie Wolfson, Quiteria Jacquez, Bianca L. Myers, Huining Kang, Katherine E. Zychowski, Stuart S. Winter, Mignon L. Loh, Stephen P. Hunger, Eliseo F. Castillo, Tom Taghon, Christina Halsey, Tou Yia Vue, Nicholas Jones, Panagiotis Ntziachristos, Ksenia Matlawska-Wasowska
There is an urgent need to find targeted agents for T-cell acute lymphoblastic leukemia (T-ALL). NOTCH1 is the most frequently mutated oncogene in T-ALL, but clinical trials showed that pan-Notch inhibitors caused dose-limiting toxicities. Thus, we shifted our focus to ETS1, which is one of the transcription factors that most frequently co-bind Notch-occupied regulatory elements in the T-ALL context. To identify the most essential enhancers, we performed a genome-wide CRISPR interference screen of the strongest ETS1-dependent regulatory elements. The #1-ranked element is located in an intron of AHI1 that interacts with the MYB promoter and is amplified with MYB in ~8.5% of T-ALL patients. Using mouse models, we showed that this enhancer promotes self-renewal of hematopoietic stem cells and T-cell leukemogenesis, maintains early T-cell precursors, and restrains myeloid expansion with aging. We named this enhancer the hematopoietic stem cell MYB enhancer (H-Me). The H-Me shows limited activity and function in committed T-cell progenitors but is accessed during leukemogenesis. In one T-ALL context, ETS1 binds the ETS motif in the H-Me to recruit cBAF to promote chromatin accessibility and activation. ETS1 or cBAF degraders impaired H-Me function. Thus, we identified a targetable stem cell element that is co-opted for T-cell transformation.
Carea Mullin, Karena Lin, Elizabeth Choe, Cher Sha, Zeel Shukla, Koral Campbell, Anna C. McCarter, Annie Wang, Jannaldo Nieves-Salva, Sarah Khan, Theresa M. Keeley, Shannon Liang, Qing Wang, Ashley F. Melnick, Pearl Evans, Alexander C. Monovich, Ashwin Iyer, Rohan Kodgule, Yamei Deng, Felipe da Veiga Leprevost, Kelly R. Barnett, Petri Pölönen, Rami Khoriaty, Daniel Savic, David T. Teachey, Charles G. Mullighan, Marcin Cieslik, Alexey I. Nesvizhskii, Linda C. Samuelson, Morgan Jones, Qing Li, Russell J.H. Ryan, Mark Y. Chiang