The intratumor microenvironment shapes the metastatic potential of cancer cells and their susceptibility to any immune response. Yet the nature of the signals within the microenvironment that control anti-cancer immunity and how they are regulated is poorly understood. Here, using melanoma as a model, we investigate the involvement in metastatic dissemination and the immune-modulatory microenvironment of Protein S-Acyl Transferases, as an underexplored class of potential therapeutic targets. We find that ZDHHC13, suppresses metastatic dissemination by palmitoylation of CTNND1, leading to stabilization of E-cadherin. Importantly, ZDHHC13 also reshapes the tumor immune microenvironment by suppressing lysophosphatidylcholine (LPC) synthesis in melanoma cells, leading to inhibition of M2-like tumor-associated macrophages that we show degrades E-cadherin via MMP12 expression. Consequently, ZDHHC13 activity suppresses tumor growth and metastasis in immunocompetent mice. Our study highlights the therapeutic potential of targeting the ZDHHC13-E-cadherin axis and its downstream metabolic and immune-modulatory mechanisms, offering additional strategies to inhibit melanoma progression and metastasis.
Hongjin Li, Jianke Lyu, Yu Sun, Chengqian Yin, Yuewen Li, Weiqiang Chen, Suan-Sin Foo, Xianfang Wu, Colin Goding, Shuyang Chen
TMPRSS2:ERG gene fusion (T:E fusion) in prostate adenocarcinoma (PCa) puts ERG under androgen receptor (AR) regulated TMPRSS2 expression. T:E fusion is associated with PTEN loss, and is highly associated with decreased INPP4B expression, which together may compensate for ERG-mediated suppression of AKT signaling. We confirmed in PCa cells and a mouse PCa model that ERG suppresses IRS2 and AKT activation. In contrast, ERG downregulation did not increase INPP4B, suggesting its decrease is indirect and reflects selective pressure to suppress INPP4B function. Notably, INPP4B expression is decreased in PTEN-intact and PTEN-deficient T:E fusion tumors, suggesting selection for a nonredundant function. As ERG in T:E fusion tumors is AR regulated, we further assessed whether AR inhibition increases AKT activity in T:E fusion tumors. A T:E fusion positive PDX had increased AKT activity in vivo and response to AKT inhibition in vitro after androgen deprivation. Moreover, two clinical trials of neoadjuvant AR inhibition prior to radical prostatectomy showed greater increases in AKT activation in the T:E fusion positive versus negative tumors. These findings indicate that AKT activation may mitigate the efficacy of AR targeted therapy in T:E fusion PCa, and that these patients may most benefit from combination therapy targeting AR and AKT.
Fen Ma, Sen Chen, Luigi Cecchi, Betul Ersoy-Fazlioglu, Joshua W. Russo, Seiji Arai, Seifeldin Awad, Carla Calagua, Fang Xie, Larysa Poluben, Olga Voznesensky, Anson T. Ku, Fatima Karzai, Changmeng Cai, David J. Einstein, Huihui Ye, Xin Yuan, Alex Toker, Mary-Ellen Taplin, Adam G. Sowalsky, Steven P. Balk
Chemotherapy resistance remains a formidable challenge to the treatment of high-grade serous ovarian cancer (HGSOC). The drug-tolerant cells may originate from a small population of inherently resistant cancer stem cells (CSCs) in primary tumors. In contrast, sufficient evidence suggests that drug tolerance can also be transiently acquired by nonstem cancer cells. Regardless of the route, key regulators of this plastic process are poorly understood. Here, we utilized multiomics, tumor microarrays, and epigenetic modulation to demonstrate that SOX9 is a key chemo-induced driver of chemoresistance in HGSOC. Epigenetic upregulation of SOX9 was sufficient to induce chemoresistance in multiple HGSOC lines. Moreover, this upregulation induced the formation of a stem-like subpopulation and significant chemoresistance in vivo. Mechanistically, SOX9 increased transcriptional divergence, reprogramming the transcriptional state of naive cells into a stem-like state. Supporting this, we identified a rare cluster of SOX9-expressing cells in primary tumors that were highly enriched for CSCs and chemoresistance-associated stress gene modules. Notably, single-cell analysis showed that chemo treatment results in rapid population-level induction of SOX9 that enriches for a stem-like transcriptional state. Altogether, these findings implicate SOX9 as a critical regulator of early steps of transcriptional reprogramming that lead to chemoresistance through a CSC-like state in HGSOC.
Alexander J. Duval, Fidan Seker-Polat, Magdalena Rogozinska, Meric Kinali, Ann E. Walts, Ozlem Neyisci, Yaqi Zhang, Zhonglin Li, Edward J. Tanner III, Allison E. Grubbs, Sandra Orsulic, Daniela Matei, Mazhar Adli
BACKGROUND. A key objective in managing HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) is reducing radiation therapy (RT) doses without compromising cure rates. A recent Phase 2/3 HN005 trial revealed that clinical factors alone are insufficient to guide safe RT dose de-escalation. Our prior research demonstrated that the Genomic Adjusted Radiation Dose (GARD) predicts RT benefit and may inform dose selection. We hypothesize that GARD can guide personalized RT de-escalation in HPV-positive OPSCC patients. METHODS. Gene expression profiles were analyzed in 191 HPV-positive OPSCC patients enrolled in an international, multi-institutional observational study (AJCC 8th edition stages I–III). Most patients received 70 Gy in 35 fractions or 69.96 Gy in 33 fractions (median dose: 70 Gy, range: 51.0–74.0 Gy). Overall survival (OS) was 94.1% at 36 months and 87.3% at 60 months. Cox proportional hazards models assessed association between GARD and OS, and time-dependent ROC analyses compared GARD with traditional clinical predictors. RESULTS. Despite uniform RT dosing, GARD showed wide heterogeneity ([15.4–71.7]). Higher GARD values were significantly associated with improved OS in univariate (HR = 0.941, P = 0.041) and multivariable analyses (HR = 0.943, P = 0.046), while T and N stage were not. GARD demonstrated superior predictive performance at 36 months (AUC = 78.26) versus clinical variables (AUC = 71.20). Two GARD-based RT de-escalation strategies were identified, offering potential survival benefits while reducing radiation exposure. CONCLUSIONS. GARD predicts overall survival and outperforms clinical variables, supporting its integration into the diagnostic workflow for personalized RT in HPV-positive OPSCC.
Emily Ho, Loris De Cecco, Steven A. Eschrich, Stefano Cavalieri, Geoffrey Sedor, Frank J. Hoebers, Ruud H. Brakenhoff, Kathrin Scheckenbach, Tito Poli, Kailin Yang, Jessica A. Scarborough, Shivani Nellore, Shauna R. Campbell, Neil M. Woody, Timothy A. Chan, Jacob Miller, Natalie L. Silver, Shlomo Koyfman, James E. Bates, Jimmy J. Caudell, Michael W. Kattan, Lisa Licitra, Javier F. Torres-Roca, Jacob G. Scott
Activating mutations in PIK3CA, the gene encoding the catalytic p110-alpha subunit of PI3K, are some of the most frequent genomic alterations in breast cancer. Alpelisib, a small-molecule inhibitor that targets p110-alpha, is a recommended drug for patients with PIK3CA-mutant advanced breast cancer. However, clinical success for PI3K inhibitors has been limited by their narrow therapeutic window. The lipid phosphatase PTEN is a potent tumour suppressor and a major negative regulator of the PI3K pathway. Unsurprisingly, inactivating mutations in PTEN correlate with tumour progression and resistance to PI3K inhibition due to persistent PI3K signalling. Here we demonstrate that PI3K inhibition leads rapidly to the inactivation of PTEN. Using a functional genetic screen we show that this effect is mediated by a USP10-GSK3-B signalling axis, in which USP10 stabilizes GSK3-B resulting in GSK3-B-mediated phosphorylation of the C-terminal tail of PTEN. This phosphorylation inhibits PTEN dimerization and thus prevents its activation. Downregulation of GSK3-B or USP10 re-sensitizes PI3K inhibitor resistant breast cancer models and patient derived organoids to PI3K inhibition and induces tumour regression. Our study establishes that enhancing PTEN activity is a new strategy to treat PIK3CA mutant tumours and provides a strong rationale for pursuing USP10 inhibitors in the clinic.
Nishi Kumari, Sarah CE. Wright, Christopher M. Witham, Laia Monserrat, Marta Palafox, John Lalith Charles Richard, Carlotta Costa, Moshe Elkabets, Mark Agostino, Theresa Klemm, Melissa K. Eccles, Alexandra Garnham, Ting Wu, Jonas A. Nilsson, Nikita Walz, Veena Venugopal, Anthony Cerra, Natali Vasilevski, Stephanie C. Bridgeman, Sona Bassi, Azad Saei, Moutaz Helal, Philipp Neundorf, Angela Riedel, Mathias Rosenfeldt, Jespal Gill, Nikolett Pahor, Oliver Hartmann, Jacky Chung, Sachdev S. Sidhu, Nina Moderau, Sudhakar Jha, Jordi Rodon, Markus E. Diefenbacher, David Komander, Violeta Serra, Pieter Eichhorn
3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid. Here we show that HSAT is ubiquitously expressed in the basement membranes of epithelial cells in multiple tissues. In the pancreas, HSAT is expressed by healthy ductal cells and its expression is increased in premalignant pancreatic intraepithelial neoplasia lesions (PanINs), but not in pancreatic ductal adenocarcinoma (PDAC). Inactivation of HS3ST1, a key enzyme in HSAT synthesis, in PDAC cells eliminated HSAT expression, induced an inflammatory phenotype, suppressed markers of apoptosis, and increased metastasis in an experimental mouse PDAC model. HSAT-positive PDAC cells bind AT, which inhibits the generation of active thrombin by tissue factor (TF) and Factor VIIa. Furthermore, plasma from PDAC patients showed accumulation of HSAT suggesting its potential as a marker of tumor formation. These findings suggest that HSAT exerts a tumor suppressing function through recruitment of AT and that the decrease in HSAT during progression of pancreatic tumorigenesis increases inflammation and metastatic potential.
Thomas Mandel Clausen, Ryan J. Weiss, Jacob R. Tremblay, Benjamin P. Kellman, Joanna Coker, Leo A. Dworkin, Jessica P. Rodriguez, Ivy M. Chang, Timothy Chen, Vikram Padala, Richard Karlsson, Hyemin Song, Kristina L. Peck, Satoshi Ogawa, Daniel R. Sandoval, Hiren J. Joshi, Gaowei Wang, L. Paige Ferguson, Nikita Bhalerao, Allison Moores, Tannishtha Reya, Maike Sander, Thomas C. Caffrey, Jean L. Grem, Alexandra Aicher, Christopher Heeschen, Dzung Le, Nathan E. Lewis, Michael A. Hollingsworth, Paul M. Grandgenett, Susan L. Bellis, Rebecca L. Miller, Mark M. Fuster, David W. Dawson, Dannielle D. Engle, Jeffrey D. Esko
The immune ecosystem is central to maintaining effective defensive responses. However, it remains largely understudied how immune cells in the peripheral blood interact with circulating tumor cells (CTCs) in metastasis. Here, blood analysis of patients with advanced breast cancer revealed that over 75% of CTC-positive blood specimens contained heterotypic CTC clusters with CD45+ white blood cells (WBCs), which correlates with breast cancer subtypes, racial groups, and decreased survival. CTC-WBC clusters included overrepresented T cells and underrepresented neutrophils. Specifically, a rare subset of CD4 and CD8 double-positive T (DPT) cells was 140-fold enriched in CTC clusters versus their frequency in WBCs. DPT cells shared properties with CD4+ and CD8+ T cells but exhibited unique features of T cell exhaustion and immune suppression. Mechanistically, the integrin heterodimer α4β1, also named very late antigen 4 (VLA-4), in DPT cells and its ligand, VCAM1, in tumor cells are essential mediators of DPT-CTC clusters. Neoadjuvant administration of anti-VLA-4 neutralizing antibodies markedly blocked CTC–DPT clusters, inhibited metastasis, and extended mouse survival. These findings highlight a pivotal role of rare DPT cells in fostering cancer dissemination through CTC clustering. It lays a foundation for developing innovative biomarker-guided therapeutic strategies to prevent and target cancer metastasis.
David Scholten, Lamiaa El-Shennawy, Yuzhi Jia, Youbin Zhang, Elizabeth Hyun, Carolina Reduzzi, Andrew D. Hoffmann, Hannah F. Almubarak, Fangjia Tong, Nurmaa K. Dashzeveg, Yuanfei Sun, Joshua R. Squires, Janice Lu, Leonidas C. Platanias, Clive H. Wasserfall, William J. Gradishar, Massimo Cristofanilli, Deyu Fang, Huiping Liu
A cornerstone of research to improve cancer outcomes involves studies of model systems to identify causal drivers of oncogenesis, understand mechanisms leading to metastases, and develop new therapeutics. While most cancer types are represented by large cell line panels that reflect diverse neoplastic genotypes and phenotypes found in patients, prostate cancer is notable for a very limited repertoire of models that recapitulate the pathobiology of human disease. Of these, Lymph node carcinoma of the prostate (LNCaP) has served as the major resource for basic and translational studies. Here, we delineated the molecular composition of LNCaP and multiple substrains through analyses of whole genome sequences, transcriptomes, chromatin structure, AR cistromes, and functional studies. Our results determined that LNCaP exhibits substantial subclonal diversity, ongoing genomic instability and phenotype plasticity. While several oncogenic features were consistently present across strains, others were unexpectedly variable such as ETV1 expression, Y chromosome loss, a reliance on WNT and glucocorticoid receptor activity, and distinct AR alterations maintaining AR pathway activation. These results document the inherent molecular heterogeneity and ongoing genomic instability that drive diverse prostate cancer phenotypes and provide a foundation for the accurate interpretation and reproduction of research findings.
Arnab Bose, Armand Bankhead III, Ilsa Coleman, Thomas Persse, Wanting Han, Patricia Galipeau, Brian Hanratty, Tony Chu, Jared Lucas, Dapei Li, Rabeya Bilkis, Pushpa Itagi, Sajida Hassan, Mallory Beightol, Minjeong Ko, Ruth Dumpit, Michael Haffner, Colin Pritchard, Gavin Ha, Peter S. Nelson
Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited and strategies to prevent HCC development are lacking. Aiming to discover novel therapeutic targets, we combined genome wide transcriptomic analysis of liver tissues from patients with advanced liver disease and HCC and a cell-based system predicting liver disease progression and HCC risk. Computational analysis predicted peroxiredoxin 2 (PRDX2) as a candidate gene mediating hepatocarcinogenesis and HCC risk. Analysis of HCC patient tissues confirmed a perturbed expression of PRDX2 in cancer. In vivo perturbation studies in mouse models for MASH driven hepatocarcinogenesis showed that specific Prdx2 knockout in hepatocytes significantly improved metabolic liver functions, restored AMPK activity and prevented HCC development by suppressing oncogenic signaling. Perturbations studies in HCC cell lines, a CDX mouse model and patient-derived HCC spheroids unraveled that PRDX2 also mediates cancer initiation, cancer cell proliferation and survival through its antioxidant activity. Targeting PRDX2 may therefore be a valuable strategy to prevent HCC development in metabolic liver disease.
Emilie Crouchet, Eugénie Schaeffer, Marine A. Oudot, Julien Moehlin, Cloé Gadenne, Frank Jühling, Hussein El Saghire, Naoto Fujiwara, Shijia Zhu, Fahmida Akter Rasha, Sarah C. Durand, Anouk Charlot, Clara Ponsolles, Romain Martin, Nicolas Brignon, Fabio Del Zompo, Laura Meiss Heydmann, Marie Parnot, Nourdine Hamdane, Danijela Heide, Jenny Hetzer, Mathias Heikenwälder, Emanuele Felli, Patrick Pessaux, Nathalie Pochet, Joffrey Zoll, Brian Cunniff, Yujin Hoshida, Laurent Mailly, Thomas F. Baumert, Catherine Schuster
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC. ZEB1 knockdown synergized with gemcitabine and anti-PD1 therapy, markedly suppressed PC growth, and prolonged survival in vivo. Single-cell and spatial transcriptomics revealed that ZEB1 ablation promoted tumor pyroptosis by recruiting and activating GZMA+CD8+ T cells in the tumor core through epigenetic upregulation of CXCL16. Meanwhile, ZEB1 blockade attenuates CD44+ neutrophil-induced CD8+ T cell exhaustion by reducing tumor-derived SPP1 secretion, which otherwise promotes exhaustion through activation of the PD-L1–PD-1 pathway. Clinically, high ZEB1 expression correlated with chemoresistance, immunosuppression, and diminished CXCL16 levels in PC patients. Importantly, the epigenetic inhibitor Mocetinostat (targeting ZEB1) potentiated chemoimmunotherapy efficacy, including anti-PD1 and CAR-T therapies, in patient-derived organoids, xenografts, and orthotopic models. Our study unveils ZEB1 as a master epigenetic regulator of chemoimmunotherapy resistance and proposes its targeting as a transformative strategy for PC treatment.
Shaobo Zhang, Yumeng Hu, Zhijun Zhou, Gaoyuan Lv, Chenze Zhang, Yuanyuan Guo, Fangxia Wang, Yuxin Ye, Haoran Qi, Hui Zhang, Wenming Wu, Min Li, Mingyang Liu