Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,421 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 142
  • 143
  • Next →
Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity
Juan R. Cubillos-Ruiz, Xavier Engle, Uciane K. Scarlett, Diana Martinez, Amorette Barber, Raul Elgueta, Li Wang,, Yolanda Nesbeth, Yvon Durant,, Andrew T. Gewirtz, Charles L. Sentman, Ross Kedl, Jose R. Conejo-Garcia
Juan R. Cubillos-Ruiz, Xavier Engle, Uciane K. Scarlett, Diana Martinez, Amorette Barber, Raul Elgueta, Li Wang,, Yolanda Nesbeth, Yvon Durant,, Andrew T. Gewirtz, Charles L. Sentman, Ross Kedl, Jose R. Conejo-Garcia
View: Text | PDF

Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity

  • Text
  • PDF
Abstract

The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1–ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5–/– littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor–associated DCs. In ovarian carcinoma–bearing mice, this induced T cell–mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.

Authors

Juan R. Cubillos-Ruiz, Xavier Engle, Uciane K. Scarlett, Diana Martinez, Amorette Barber, Raul Elgueta, Li Wang,, Yolanda Nesbeth, Yvon Durant,, Andrew T. Gewirtz, Charles L. Sentman, Ross Kedl, Jose R. Conejo-Garcia

×

Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells
Silvia Álvarez-Díaz, Noelia Valle, José Miguel García, Cristina Peña, José M.P. Freije, Víctor Quesada, Aurora Astudillo, Félix Bonilla, Carlos López-Otín, Alberto Muñoz
Silvia Álvarez-Díaz, Noelia Valle, José Miguel García, Cristina Peña, José M.P. Freije, Víctor Quesada, Aurora Astudillo, Félix Bonilla, Carlos López-Otín, Alberto Muñoz
View: Text | PDF

Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells

  • Text
  • PDF
Abstract

The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] has wide but not fully understood antitumor activity. A previous transcriptomic analysis of 1α,25(OH)2D3 action on human colon cancer cells revealed cystatin D (CST5), which encodes an inhibitor of several cysteine proteases of the cathepsin family, as a candidate target gene. Here we report that 1α,25(OH)2D3 induced vitamin D receptor (VDR) binding to, and activation of, the CST5 promoter and increased CST5 RNA and protein levels in human colon cancer cells. In cells lacking endogenous cystatin D, ectopic cystatin D expression inhibited both proliferation in vitro and xenograft tumor growth in vivo. Furthermore, cystatin D inhibited migration and anchorage-independent growth, antagonized the Wnt/β-catenin signaling pathway, and repressed c-MYC expression. Cystatin D repressed expression of the epithelial-mesenchymal transition inducers SNAI1, SNAI2, ZEB1, and ZEB2 and, conversely, induced E-cadherin and other adhesion proteins. CST5 knockdown using shRNA abrogated the antiproliferative effect of 1α,25(OH)2D3, attenuated E-cadherin expression, and increased c-MYC expression. In human colorectal tumors, expression of cystatin D correlated with expression of VDR and E-cadherin, and loss of cystatin D correlated with poor tumor differentiation. Based on these data, we propose that CST5 has tumor suppressor activity that may contribute to the antitumoral action of 1α,25(OH)2D3 in colon cancer.

Authors

Silvia Álvarez-Díaz, Noelia Valle, José Miguel García, Cristina Peña, José M.P. Freije, Víctor Quesada, Aurora Astudillo, Félix Bonilla, Carlos López-Otín, Alberto Muñoz

×

HIF2α cooperates with RAS to promote lung tumorigenesis in mice
William Y. Kim, Samanthi Perera, Bing Zhou, Julian Carretero, Jen Jen Yeh, Samuel A. Heathcote, Autumn L. Jackson, Petros Nikolinakos, Beatriz Ospina, George Naumov, Kathleyn A. Brandstetter, Victor J. Weigman, Sara Zaghlul, D. Neil Hayes, Robert F. Padera, John V. Heymach, Andrew L. Kung, Norman E. Sharpless, William G. Kaelin Jr., Kwok-Kin Wong
William Y. Kim, Samanthi Perera, Bing Zhou, Julian Carretero, Jen Jen Yeh, Samuel A. Heathcote, Autumn L. Jackson, Petros Nikolinakos, Beatriz Ospina, George Naumov, Kathleyn A. Brandstetter, Victor J. Weigman, Sara Zaghlul, D. Neil Hayes, Robert F. Padera, John V. Heymach, Andrew L. Kung, Norman E. Sharpless, William G. Kaelin Jr., Kwok-Kin Wong
View: Text | PDF | Corrigendum

HIF2α cooperates with RAS to promote lung tumorigenesis in mice

  • Text
  • PDF
Abstract

Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non–small cell lung cancer (NSCLC), high HIF2α levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2α is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2α and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial-mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2α causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2α can promote expression of markers of EMT, and define HIF2α as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2α and prognosis in patients with NSCLC.

Authors

William Y. Kim, Samanthi Perera, Bing Zhou, Julian Carretero, Jen Jen Yeh, Samuel A. Heathcote, Autumn L. Jackson, Petros Nikolinakos, Beatriz Ospina, George Naumov, Kathleyn A. Brandstetter, Victor J. Weigman, Sara Zaghlul, D. Neil Hayes, Robert F. Padera, John V. Heymach, Andrew L. Kung, Norman E. Sharpless, William G. Kaelin Jr., Kwok-Kin Wong

×

A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug l-asparaginase
Naina Patel, Shekhar Krishnan, Marc N. Offman, Marcin Krol, Catherine X. Moss, Carly Leighton, Frederik W. van Delft, Mark Holland, JiZhong Liu, Seema Alexander, Clare Dempsey, Hany Ariffin, Monika Essink, Tim O.B. Eden, Colin Watts, Paul A. Bates, Vaskar Saha
Naina Patel, Shekhar Krishnan, Marc N. Offman, Marcin Krol, Catherine X. Moss, Carly Leighton, Frederik W. van Delft, Mark Holland, JiZhong Liu, Seema Alexander, Clare Dempsey, Hany Ariffin, Monika Essink, Tim O.B. Eden, Colin Watts, Paul A. Bates, Vaskar Saha
View: Text | PDF

A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug l-asparaginase

  • Text
  • PDF
Abstract

l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL.

Authors

Naina Patel, Shekhar Krishnan, Marc N. Offman, Marcin Krol, Catherine X. Moss, Carly Leighton, Frederik W. van Delft, Mark Holland, JiZhong Liu, Seema Alexander, Clare Dempsey, Hany Ariffin, Monika Essink, Tim O.B. Eden, Colin Watts, Paul A. Bates, Vaskar Saha

×

Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells
Wendy K. Roberts, Ilana J. Deluca, Ashby Thomas, John Fak, Travis Williams, Noreen Buckley, Athanasios G. Dousmanis, Jerome B. Posner, Robert B. Darnell
Wendy K. Roberts, Ilana J. Deluca, Ashby Thomas, John Fak, Travis Williams, Noreen Buckley, Athanasios G. Dousmanis, Jerome B. Posner, Robert B. Darnell
View: Text | PDF

Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells

  • Text
  • PDF
Abstract

Paraneoplastic neurologic disorders (PNDs) offer an uncommon opportunity to study human tumor immunity and autoimmunity. In small cell lung cancer (SCLC), expression of the HuD neuronal antigen is thought to lead to immune recognition, suppression of tumor growth, and, in a subset of patients, triggering of the Hu paraneoplastic neurologic syndrome. Antigen-specific CTLs believed to contribute to disease pathophysiology were described 10 years ago in paraneoplastic cerebellar degeneration. Despite parallel efforts, similar cells have not been defined in Hu patients. Here, we have identified HuD-specific T cells in Hu patients and provided an explanation for why their detection has been elusive. Different Hu patients harbored 1 of 2 kinds of HuD-specific CD8+ T cells: classical IFN-γ–producing CTLs or unusual T cells that produced type 2 cytokines, most prominently IL-13 and IL-5, and lacked cytolytic activity. Further, we found evidence that SCLC tumor cells produced type 2 cytokines and that these cytokines trigger naive CD8+ T cells to adopt the atypical type 2 phenotype. These observations demonstrate the presence of an unusual noncytotoxic CD8+ T cell in patients with the Hu paraneoplastic syndrome and suggest that SCLC may evade tumor immune surveillance by skewing tumor antigen–specific T cells to this unusual noncytolytic phenotype.

Authors

Wendy K. Roberts, Ilana J. Deluca, Ashby Thomas, John Fak, Travis Williams, Noreen Buckley, Athanasios G. Dousmanis, Jerome B. Posner, Robert B. Darnell

×

Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy
Waleed M. Abuzeid, Xiaoling Jiang, Guoli Shi, Hui Wang, David Paulson, Koji Araki, David Jungreis, James Carney, Bert W. O’Malley Jr., Daqing Li
Waleed M. Abuzeid, Xiaoling Jiang, Guoli Shi, Hui Wang, David Paulson, Koji Araki, David Jungreis, James Carney, Bert W. O’Malley Jr., Daqing Li
View: Text | PDF | Corrigendum

Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy

  • Text
  • PDF
Abstract

Platinum-based drugs that induce DNA damage are commonly used first-line chemotherapy agents for testicular, bladder, head and neck, lung, esophageal, stomach, and ovarian cancers. The inherent resistance of tumors to DNA damage often limits the therapeutic efficacy of these agents, such as cisplatin. An enhanced DNA repair and telomere maintenance response by the Mre11/Rad50/Nbs1 (MRN) complex is critical in driving this chemoresistance. We hypothesized therefore that the targeted impairment of native cellular MRN function could sensitize tumor cells to cisplatin. To test this, we designed what we believe to be a novel dominant-negative adenoviral vector containing a mutant RAD50 gene that significantly downregulated MRN expression and markedly disrupted MRN function in human squamous cell carcinoma cells. A combination of cisplatin and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage and telomere shortening. In cisplatin-resistant human squamous cell cancer xenografts in nude mice, this combination therapy caused dramatic tumor regression with increased apoptosis. Our findings suggest the use of targeted RAD50 disruption as what we believe to be a novel chemosensitizing approach for cancer therapy in the context of chemoresistance. This strategy is potentially applicable to several types of malignant tumors that demonstrate chemoresistance and may positively impact the treatment of these patients.

Authors

Waleed M. Abuzeid, Xiaoling Jiang, Guoli Shi, Hui Wang, David Paulson, Koji Araki, David Jungreis, James Carney, Bert W. O’Malley Jr., Daqing Li

×

Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer
Brian Bierie, Christine H. Chung, Joel S. Parker, Daniel G. Stover, Nikki Cheng, Anna Chytil, Mary Aakre, Yu Shyr, Harold L. Moses
Brian Bierie, Christine H. Chung, Joel S. Parker, Daniel G. Stover, Nikki Cheng, Anna Chytil, Mary Aakre, Yu Shyr, Harold L. Moses
View: Text | PDF

Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer

  • Text
  • PDF
Abstract

In human breast cancer, loss of carcinoma cell–specific response to TGF-β signaling has been linked to poor patient prognosis. However, the mechanisms through which TGF-β regulates these processes remain largely unknown. In an effort to address this issue, we have now identified gene expression signatures associated with the TGF-β signaling pathway in human mammary carcinoma cells. The results strongly suggest that TGF-β signaling mediates intrinsic, stromal-epithelial, and host-tumor interactions during breast cancer progression, at least in part, by regulating basal and oncostatin M–induced CXCL1, CXCL5, and CCL20 chemokine expression. To determine the clinical relevance of our results, we queried our TGF-β–associated gene expression signatures in 4 human breast cancer data sets containing a total of 1,319 gene expression profiles and associated clinical outcome data. The signature representing complete abrogation of TGF-β signaling correlated with reduced relapse-free survival in all patients; however, the strongest association was observed in patients with estrogen receptor–positive (ER-positive) tumors, specifically within the luminal A subtype. Together, the results suggest that assessment of TGF-β signaling pathway status may further stratify the prognosis of ER-positive patients and provide novel therapeutic approaches in the management of breast cancer.

Authors

Brian Bierie, Christine H. Chung, Joel S. Parker, Daniel G. Stover, Nikki Cheng, Anna Chytil, Mary Aakre, Yu Shyr, Harold L. Moses

×

Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions
Martin L. Sos, et al.
Martin L. Sos, et al.
View: Text | PDF

Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions

  • Text
  • PDF
Abstract

Somatic genetic alterations in cancers have been linked with response to targeted therapeutics by creation of specific dependency on activated oncogenic signaling pathways. However, no tools currently exist to systematically connect such genetic lesions to therapeutic vulnerability. We have therefore developed a genomics approach to identify lesions associated with therapeutically relevant oncogene dependency. Using integrated genomic profiling, we have demonstrated that the genomes of a large panel of human non–small cell lung cancer (NSCLC) cell lines are highly representative of those of primary NSCLC tumors. Using cell-based compound screening coupled with diverse computational approaches to integrate orthogonal genomic and biochemical data sets, we identified molecular and genomic predictors of therapeutic response to clinically relevant compounds. Using this approach, we showed that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations confer enhanced Hsp90 dependency and validated this finding in mice with KRAS-driven lung adenocarcinoma, as these mice exhibited dramatic tumor regression when treated with an Hsp90 inhibitor. In addition, we found that cells with copy number enhancement of v-abl Abelson murine leukemia viral oncogene homolog 2 (ABL2) and ephrin receptor kinase and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) kinase family genes were exquisitely sensitive to treatment with the SRC/ABL inhibitor dasatinib, both in vitro and when it xenografted into mice. Thus, genomically annotated cell-line collections may help translate cancer genomics information into clinical practice by defining critical pathway dependencies amenable to therapeutic inhibition.

Authors

Martin L. Sos, Kathrin Michel, Thomas Zander, Jonathan Weiss, Peter Frommolt, Martin Peifer, Danan Li, Roland Ullrich, Mirjam Koker, Florian Fischer, Takeshi Shimamura, Daniel Rauh, Craig Mermel, Stefanie Fischer, Isabel Stückrath, Stefanie Heynck, Rameen Beroukhim, William Lin, Wendy Winckler, Kinjal Shah, Thomas LaFramboise, Whei F. Moriarty, Megan Hanna, Laura Tolosi, Jörg Rahnenführer, Roel Verhaak, Derek Chiang, Gad Getz, Martin Hellmich, Jürgen Wolf, Luc Girard, Michael Peyton, Barbara A. Weir, Tzu-Hsiu Chen, Heidi Greulich, Jordi Barretina, Geoffrey I. Shapiro, Levi A. Garraway, Adi F. Gazdar, John D. Minna, Matthew Meyerson, Kwok-Kin Wong, Roman K. Thomas

×

CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells
Yaohe Wang, Rathi Gangeswaran, Xingbo Zhao, Pengju Wang, James Tysome, Vipul Bhakta, Ming Yuan, C.P. Chikkanna-Gowda, Guozhong Jiang, Dongling Gao, Fengyu Cao, Jennelle Francis, Jinxia Yu, Kangdong Liu, Hongyan Yang, Yunhan Zhang, Weidong Zang, Claude Chelala, Ziming Dong, Nick Lemoine
Yaohe Wang, Rathi Gangeswaran, Xingbo Zhao, Pengju Wang, James Tysome, Vipul Bhakta, Ming Yuan, C.P. Chikkanna-Gowda, Guozhong Jiang, Dongling Gao, Fengyu Cao, Jennelle Francis, Jinxia Yu, Kangdong Liu, Hongyan Yang, Yunhan Zhang, Weidong Zang, Claude Chelala, Ziming Dong, Nick Lemoine
View: Text | PDF

CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells

  • Text
  • PDF
Abstract

The changes in cancer cell surface molecules and intracellular signaling pathways during tumorigenesis make delivery of adenovirus-based cancer therapies inefficient. Here we have identified carcinoembryonic antigen–related cell adhesion molecule 6 (CEACAM6) as a cellular protein that restricts the ability of adenoviral vectors to infect cancer cells. We have demonstrated that CEACAM6 can antagonize the Src signaling pathway, downregulate cancer cell cytoskeleton proteins, and block adenovirus trafficking to the nucleus of human pancreatic cancer cells. Similar to CEACAM6 overexpression, treatment with a Src-selective inhibitor significantly reduced adenovirus replication in these cancer cells and normal human epithelial cells. In a mouse xenograft tumor model, siRNA-mediated knockdown of CEACAM6 also significantly enhanced the antitumor effect of an oncolytic adenovirus. We propose that CEACAM6-associated signaling pathways could be potential targets for the development of biomarkers to predict the response of patients to adenovirus-based therapies, as well as for the development of more potent adenovirus-based therapeutics.

Authors

Yaohe Wang, Rathi Gangeswaran, Xingbo Zhao, Pengju Wang, James Tysome, Vipul Bhakta, Ming Yuan, C.P. Chikkanna-Gowda, Guozhong Jiang, Dongling Gao, Fengyu Cao, Jennelle Francis, Jinxia Yu, Kangdong Liu, Hongyan Yang, Yunhan Zhang, Weidong Zang, Claude Chelala, Ziming Dong, Nick Lemoine

×

Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer
Simona Nanni, Valentina Benvenuti, Annalisa Grasselli, Carmen Priolo, Aurora Aiello, Stefania Mattiussi, Claudia Colussi, Vittoria Lirangi, Barbara Illi, Manuela D’Eletto, Anna Maria Cianciulli, Michele Gallucci, Piero De Carli, Steno Sentinelli, Marcella Mottolese, Paolo Carlini, Lidia Strigari, Stephen Finn, Elke Mueller, Giorgio Arcangeli, Carlo Gaetano, Maurizio C. Capogrossi, Raffaele Perrone Donnorso, Silvia Bacchetti, Ada Sacchi, Alfredo Pontecorvi, Massimo Loda, Antonella Farsetti
Simona Nanni, Valentina Benvenuti, Annalisa Grasselli, Carmen Priolo, Aurora Aiello, Stefania Mattiussi, Claudia Colussi, Vittoria Lirangi, Barbara Illi, Manuela D’Eletto, Anna Maria Cianciulli, Michele Gallucci, Piero De Carli, Steno Sentinelli, Marcella Mottolese, Paolo Carlini, Lidia Strigari, Stephen Finn, Elke Mueller, Giorgio Arcangeli, Carlo Gaetano, Maurizio C. Capogrossi, Raffaele Perrone Donnorso, Silvia Bacchetti, Ada Sacchi, Alfredo Pontecorvi, Massimo Loda, Antonella Farsetti
View: Text | PDF

Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer

  • Text
  • PDF
Abstract

The identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor β (ERβ). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production. Upon estrogen treatment, formation of ERβ/eNOS, ERβ/HIF-1α, or ERβ/HIF-2α combinatorial complexes led to chromatin remodeling and transcriptional induction of prognostic genes. Tissue microarray analysis, using an independent cohort of patients, established a hierarchical predictive power for these proteins, with expression of eNOS plus ERβ and nuclear eNOS plus HIF-2α being the most relevant indicators of adverse clinical outcome. Genetic or pharmacologic modulation of eNOS expression and activity resulted in reciprocal conversion of the transcriptional signature in cells from patients with bad or good outcome, respectively, highlighting the relevance of eNOS in PCa progression. Our work has considerable clinical relevance, since it may enable the earlier diagnosis of aggressive PCa through routine biopsy assessment of eNOS, ERβ, and HIF-2α expression. Furthermore, proposing eNOS as a therapeutic target fosters innovative therapies for PCa with NO inhibitors, which are employed in preclinical trials in non-oncological diseases.

Authors

Simona Nanni, Valentina Benvenuti, Annalisa Grasselli, Carmen Priolo, Aurora Aiello, Stefania Mattiussi, Claudia Colussi, Vittoria Lirangi, Barbara Illi, Manuela D’Eletto, Anna Maria Cianciulli, Michele Gallucci, Piero De Carli, Steno Sentinelli, Marcella Mottolese, Paolo Carlini, Lidia Strigari, Stephen Finn, Elke Mueller, Giorgio Arcangeli, Carlo Gaetano, Maurizio C. Capogrossi, Raffaele Perrone Donnorso, Silvia Bacchetti, Ada Sacchi, Alfredo Pontecorvi, Massimo Loda, Antonella Farsetti

×
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 142
  • 143
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts