Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,357 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 135
  • 136
  • Next →
G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells
Venugopalan Cheriyath, … , Mohamad A. Hussein, Ernest C. Borden
Venugopalan Cheriyath, … , Mohamad A. Hussein, Ernest C. Borden
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):3107-3117. https://doi.org/10.1172/JCI31122.
View: Text | PDF

G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells

  • Text
  • PDF
Abstract

The effectiveness of IFN-α2b for human multiple myeloma has been variable. TRAIL has been proposed to mediate IFN-α2b apoptosis in myeloma. In this study we assessed the effects of IFN-α2b signaling on the apoptotic activity of TRAIL and human myeloma cell survival. While TRAIL was one of the most potently induced proapoptotic genes in myeloma cells following IFN-α2b treatment, less than 20% of myeloma cells underwent apoptosis. Thus, we hypothesized that an IFN-stimulated gene (ISG) with prosurvival activity might suppress TRAIL-mediated apoptosis. Consistent with this, IFN-α2b stabilized mitochondria and inhibited caspase-3 activation, which antagonized TRAIL-mediated apoptosis and cytotoxicity after 24 hours of cotreatment in cell lines and in fresh myeloma cells, an effect not evident after 72 hours. Induced expression of G1P3, an ISG with largely unknown function, was correlated with the antiapoptotic activity of IFN-α2b. Ectopically expressed G1P3 localized to mitochondria and antagonized TRAIL-mediated mitochondrial potential loss, cytochrome c release, and apoptosis, suggesting specificity of G1P3 for the intrinsic apoptosis pathway. Furthermore, RNAi-mediated downregulation of G1P3 restored IFN-α2b–induced apoptosis. Our data identify the direct role of a mitochondria-localized prosurvival ISG in antagonizing the effect of TRAIL. Curtailing G1P3-mediated antiapoptotic signals could improve therapies for myeloma or other malignancies.

Authors

Venugopalan Cheriyath, Keith B. Glaser, Jeffrey F. Waring, Rachid Baz, Mohamad A. Hussein, Ernest C. Borden

×

Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice
Shigehisa Yanagi, … , Masamitsu Nakazato, Akira Suzuki
Shigehisa Yanagi, … , Masamitsu Nakazato, Akira Suzuki
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):2929-2940. https://doi.org/10.1172/JCI31854.
View: Text | PDF

Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice

  • Text
  • PDF
Abstract

PTEN is a tumor suppressor gene mutated in many human cancers. We generated a bronchioalveolar epithelium–specific null mutation of Pten in mice [SP-C-rtTA/(tetO)7-Cre/Ptenflox/flox (SOPtenflox/flox) mice] that was under the control of doxycycline. Ninety percent of SOPtenflox/flox mice that received doxycycline in utero [SOPtenflox/flox(E10–16) mice] died of hypoxia soon after birth. Surviving SOPtenflox/flox(E10–16) mice and mice that received doxycycline postnatally [SOPtenflox/flox(P21–27) mice] developed spontaneous lung adenocarcinomas. Urethane treatment accelerated number and size of lung tumors developing in SOPtenflox/flox mice of both ages. Histological and biochemical examinations of the lungs of SOPtenflox/flox(E10–16) mice revealed hyperplasia of bronchioalveolar epithelial cells and myofibroblast precursors, enlarged alveolar epithelial cells, and impaired production of surfactant proteins. Numbers of bronchioalveolar stem cells (BASCs), putative initiators of lung adenocarcinomas, were increased. Lungs of SOPtenflox/flox(E10–16) mice showed increased expression of Spry2, which inhibits the maturation of alveolar epithelial cells. Levels of Akt, c-Myc, Bcl-2, and Shh were also elevated in SOPtenflox/flox(E10–16) and SOPtenflox/flox(P21–27) lungs. Furthermore, K-ras was frequently mutated in adenocarcinomas observed in SOPtenflox/flox(P21–27) lungs. These results indicate that Pten is essential for both normal lung morphogenesis and the prevention of lung carcinogenesis, possibly because this tumor suppressor is required for BASC homeostasis.

Authors

Shigehisa Yanagi, Hiroyuki Kishimoto, Kohichi Kawahara, Takehiko Sasaki, Masato Sasaki, Miki Nishio, Nobuyuki Yajima, Koichi Hamada, Yasuo Horie, Hiroshi Kubo, Jeffrey A. Whitsett, Tak Wah Mak, Toru Nakano, Masamitsu Nakazato, Akira Suzuki

×

Type I IFN innate immune response to adenovirus-mediated IFN-γ gene transfer contributes to the regression of cutaneous lymphomas
Mirjana Urosevic, … , Bruce Acres, Reinhard Dummer
Mirjana Urosevic, … , Bruce Acres, Reinhard Dummer
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):2834-2846. https://doi.org/10.1172/JCI32077.
View: Text | PDF

Type I IFN innate immune response to adenovirus-mediated IFN-γ gene transfer contributes to the regression of cutaneous lymphomas

  • Text
  • PDF
Abstract

The fact that adenoviral vectors activate innate immunity and induce type I IFNs has not been fully appreciated in the context of cancer gene therapy. Type I IFNs influence different aspects of human immune response and are believed to be crucial for efficient tumor rejection. We performed transcriptional profiling to characterize the response of cutaneous lymphomas to intralesional adenovirus-mediated IFN-γ (Ad-IFN-γ) gene transfer. Gene expression profiles of skin lesions obtained from 19 cutaneous lymphoma patients before and after treatment with Ad-IFN-γ revealed a distinct gene signature consisting of IFN-γ– and numerous IFN-α–inducible genes (type II– and type I–inducible genes, respectively). The type I IFN response appears to have been induced by the vector itself, and its complexity, in terms of immune activation, was potentiated by the IFN-γ gene insert. Intralesional IFN-γ expression together with the induction of a combined type I/II IFN response to Ad-IFN-γ gene transfer seem to underlie the objective (measurable) clinical response of the treated lesions. Biological effects of type I IFNs seem to enhance those set in motion by the transgene, in our case IFN-γ. This combination may prove to be of therapeutic importance in cytokine gene transfer using Ads.

Authors

Mirjana Urosevic, Kazuyasu Fujii, Bastien Calmels, Elisabeth Laine, Nikita Kobert, Bruce Acres, Reinhard Dummer

×

Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling
Chrystal M. Paulos, … , Steven A. Rosenberg, Nicholas P. Restifo
Chrystal M. Paulos, … , Steven A. Rosenberg, Nicholas P. Restifo
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):3140-3140. https://doi.org/10.1172/JCI32205C1.
View: Text | PDF | Amended Article

Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling

  • Text
  • PDF
Abstract

Authors

Chrystal M. Paulos, Claudia Wrzesinski, Andrew Kaiser, Christian S. Hinrichs, Marcello Chieppa, Lydie Cassard, Douglas C. Palmer, Andrea Boni, Pawel Muranski, Zhiya Yu, Luca Gattinoni, Paul A. Antony, Steven A. Rosenberg, Nicholas P. Restifo

×

A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia
Ulrich Steidl, … , Frank Griesinger, Daniel G. Tenen
Ulrich Steidl, … , Frank Griesinger, Daniel G. Tenen
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2611-2620. https://doi.org/10.1172/JCI30525.
View: Text | PDF

A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia

  • Text
  • PDF
Abstract

Targeted disruption of a highly conserved distal enhancer reduces expression of the PU.1 transcription factor by 80% and leads to acute myeloid leukemia (AML) with frequent cytogenetic aberrations in mice. Here we identify a SNP within this element in humans that is more frequent in AML with a complex karyotype, leads to decreased enhancer activity, and reduces PU.1 expression in myeloid progenitors in a development-dependent manner. This SNP inhibits binding of the chromatin-remodeling transcriptional regulator special AT-rich sequence binding protein 1 (SATB1). Overexpression of SATB1 increased PU.1 expression, and siRNA inhibition of SATB1 downregulated PU.1 expression. Targeted disruption of the distal enhancer led to a loss of regulation of PU.1 by SATB1. Interestingly, disruption of SATB1 in mice led to a selective decrease of PU.1 RNA in specific progenitor types (granulocyte-macrophage and megakaryocyte-erythrocyte progenitors) and a similar effect was observed in AML samples harboring this SNP. Thus we have identified a SNP within a distal enhancer that is associated with a subtype of leukemia and exerts a deleterious effect through remote transcriptional dysregulation in specific progenitor subtypes.

Authors

Ulrich Steidl, Christian Steidl, Alexander Ebralidze, Björn Chapuy, Hye-Jung Han, Britta Will, Frank Rosenbauer, Annegret Becker, Katharina Wagner, Steffen Koschmieder, Susumu Kobayashi, Daniel B. Costa, Thomas Schulz, Karen B. O’Brien, Roel G.W. Verhaak, Ruud Delwel, Detlef Haase, Lorenz Trümper, Jürgen Krauter, Terumi Kohwi-Shigematsu, Frank Griesinger, Daniel G. Tenen

×

Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma
Liping Song, … , Richard Sposto, Leonid S. Metelitsa
Liping Song, … , Richard Sposto, Leonid S. Metelitsa
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2702-2712. https://doi.org/10.1172/JCI30751.
View: Text | PDF

Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma

  • Text
  • PDF
Abstract

Vα24-invariant natural killer T (NKT) cells are potentially important for antitumor immunity. We and others have previously demonstrated positive associations between NKT cell presence in primary tumors and long-term survival in distinct human cancers. However, the mechanism by which aggressive tumors avoid infiltration with NKT and other T cells remains poorly understood. Here, we report that the v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN), the hallmark of aggressive neuroblastoma, repressed expression of monocyte chemoattractant protein–1/CC chemokine ligand 2 (MCP-1/CCL2), a chemokine required for NKT cell chemoattraction. MYCN knockdown in MYCN-amplified neuroblastoma cell lines restored CCL2 production and NKT cell chemoattraction. Unlike other oncogenes, MYCN repressed chemokine expression in a STAT3-independent manner, requiring an E-box element in the CCL2 promoter to mediate transcriptional repression. MYCN overexpression in neuroblastoma xenografts in NOD/SCID mice severely inhibited their ability to attract human NKT cells, T cells, and monocytes. Patients with MYCN-amplified neuroblastoma metastatic to bone marrow had 4-fold fewer NKT cells in their bone marrow than did their nonamplified counterparts, indicating that the MYCN-mediated immune escape mechanism, which we believe to be novel, is operative in metastatic cancer and should be considered in tumor immunobiology and for the development of new therapeutic strategies.

Authors

Liping Song, Tasnim Ara, Hong-Wei Wu, Chan-Wook Woo, C. Patrick Reynolds, Robert C. Seeger, Yves A. DeClerck, Carol J. Thiele, Richard Sposto, Leonid S. Metelitsa

×

B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling
Diana Cozma, … , Michael L. Atchison, Andrei Thomas-Tikhonenko
Diana Cozma, … , Michael L. Atchison, Andrei Thomas-Tikhonenko
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2602-2610. https://doi.org/10.1172/JCI30842.
View: Text | PDF

B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling

  • Text
  • PDF
Abstract

The presumed involvement of paired box gene 5 (PAX5) in B-lymphomagenesis is based largely on the discovery of Pax5-specific translocations and somatic hypermutations in non-Hodgkin lymphomas. Yet mechanistically, the contribution of Pax5 to neoplastic growth remains undeciphered. Here we used 2 Myc-induced mouse B lymphoma cell lines, Myc5-M5 and Myc5-M12, which spontaneously silence Pax5. Reconstitution of these cells with Pax5–tamoxifen receptor fusion protein (Pax5ERTAM) increased neoplastic growth in a hormone-dependent manner. Conversely, expression of dominant-negative Pax5 in murine lymphomas and Pax5 knockdown in human lymphomas negatively affected cell expansion. Expression profiling revealed that Pax5 was required to maintain mRNA levels of several crucial components of B cell receptor (BCR) signaling, including CD79a, a protein with the immunoreceptor tyrosine-based activation motif (ITAM). In contrast, expression of 2 known ITAM antagonists, CD22 and PIR-B, was suppressed. The key role of BCR/ITAM signaling in Pax5-dependent lymphomagenesis was corroborated in Syk, an ITAM-associated tyrosine kinase. Moreover, we observed consistent expression of phosphorylated BLNK, an activated BCR adaptor protein, in human B cell lymphomas. Thus, stimulation of neoplastic growth by Pax5 occurs through BCR and is sensitive to genetic and pharmacological inhibitors of this pathway.

Authors

Diana Cozma, Duonan Yu, Suchita Hodawadekar, Anna Azvolinsky, Shannon Grande, John W. Tobias, Michele H. Metzgar, Jennifer Paterson, Jan Erikson, Teresa Marafioti, John G. Monroe, Michael L. Atchison, Andrei Thomas-Tikhonenko

×

Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency
Neil P. Shah, … , Ronald L. Paquette, Charles L. Sawyers
Neil P. Shah, … , Ronald L. Paquette, Charles L. Sawyers
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2562-2569. https://doi.org/10.1172/JCI30890.
View: Text | PDF

Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency

  • Text
  • PDF
Abstract

Molecularly targeted kinase inhibitor cancer therapies are currently administered sequentially rather than simultaneously. We addressed the potential long-term impact of this strategy in patients with chronic myelogenous leukemia (CML), which is driven by the fusion oncogene BCR-ABL. Analysis of BCR-ABL genotypes in CML patients who relapsed after sequential treatment with the ABL inhibitors imatinib and dasatinib revealed evolving resistant BCR-ABL kinase domain mutations in all cases. Twelve patients relapsed with the pan-resistant T315I mutation, whereas 6 patients developed novel BCR-ABL mutations predicted to retain sensitivity to imatinib based on in vitro studies. Three of these patients were retreated with imatinib (or the chemically related compound nilotinib) and responded; however, selection for compound mutants (2 or 3 BCR-ABL mutations in the same molecule) can substantially limit the potential effectiveness of retreating patients with inhibitors that have previously failed. Furthermore, drug-resistant mutations, when compounded, can increase oncogenic potency relative to the component mutants in transformation assays. The Aurora kinase inhibitor VX-680, currently under clinical evaluation based on its activity against the T315I mutation, is also effective against the other commonly detected dasatinib-resistant mutation in our analysis, V299L. Our findings demonstrate the potential hazards of sequential kinase inhibitor therapy and suggest a role for a combination of ABL kinase inhibitors, perhaps including VX-680, to prevent the outgrowth of cells harboring drug-resistant BCR-ABL mutations.

Authors

Neil P. Shah, Brian J. Skaggs, Susan Branford, Timothy P. Hughes, John M. Nicoll, Ronald L. Paquette, Charles L. Sawyers

×

Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma
Diego F. Calvisi, … , Valentina M. Factor, Snorri S. Thorgeirsson
Diego F. Calvisi, … , Valentina M. Factor, Snorri S. Thorgeirsson
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2713-2722. https://doi.org/10.1172/JCI31457.
View: Text | PDF

Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma

  • Text
  • PDF
Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, accounting for an estimated 600,000 deaths annually. Aberrant methylation, consisting of DNA hypomethylation and/or promoter gene CpG hypermethylation, is implicated in the development of a variety of solid tumors, including HCC. We analyzed the global levels of DNA methylation as well as the methylation status of 105 putative tumor suppressor genes and found that the extent of genome-wide hypomethylation and CpG hypermethylation correlates with biological features and clinical outcome of HCC patients. We identified activation of Ras and downstream Ras effectors (ERK, AKT, and RAL) due to epigenetic silencing of inhibitors of the Ras pathway in all HCC. Further, selective inactivation of SPRY1 and -2, DAB2, and SOCS4 and -5 genes and inhibitors of angiogenesis (BNIP3, BNIP3L, IGFBP3, and EGLN2) was associated with poor prognosis. Importantly, several epigenetically silenced putative tumor suppressor genes found in HCC were also inactivated in the nontumorous liver. Our results assign both therapeutic and chemopreventive significance to methylation patterns in human HCC and open the possibility of using molecular targets, including those identified in this study, to effectively inhibit HCC development and progression.

Authors

Diego F. Calvisi, Sara Ladu, Alexis Gorden, Miriam Farina, Ju-Seog Lee, Elizabeth A. Conner, Insa Schroeder, Valentina M. Factor, Snorri S. Thorgeirsson

×

Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase
Madhav D. Sharma, … , Andrew L. Mellor, David H. Munn
Madhav D. Sharma, … , Andrew L. Mellor, David H. Munn
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2570-2582. https://doi.org/10.1172/JCI31911.
View: Text | PDF

Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase

  • Text
  • PDF
Abstract

A small population of plasmacytoid DCs (pDCs) in mouse tumor-draining LNs can express the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO). We show that these IDO+ pDCs directly activate resting CD4+CD25+Foxp3+ Tregs for potent suppressor activity. In vivo, Tregs isolated from tumor-draining LNs were constitutively activated and suppressed antigen-specific T cells immediately ex vivo. In vitro, IDO+ pDCs from tumor-draining LNs rapidly activated resting Tregs from non–tumor-bearing hosts without the need for mitogen or exogenous anti-CD3 crosslinking. Treg activation by IDO+ pDCs was MHC restricted, required an intact amino acid–responsive GCN2 pathway in the Tregs, and was prevented by CTLA4 blockade. Tregs activated by IDO markedly upregulated programmed cell death 1 ligand 1 (PD-L1) and PD-L2 expression on target DCs, and the ability of Tregs to suppress target T cell proliferation was abrogated by antibodies against the programmed cell death 1/PD-L (PD-1/PD-L) pathway. In contrast, Tregs activated by anti-CD3 crosslinking did not cause upregulation of PD-Ls, and suppression by these cells was unaffected by blocking the PD-1/PD-L pathway. Tregs isolated from tumor-draining LNs in vivo showed potent PD-1/PD-L–mediated suppression, which was selectively lost when tumors were grown in IDO-deficient hosts. We hypothesize that IDO+ pDCs create a profoundly suppressive microenvironment within tumor-draining LNs via constitutive activation of Tregs.

Authors

Madhav D. Sharma, Babak Baban, Phillip Chandler, De-Yan Hou, Nagendra Singh, Hideo Yagita, Miyuki Azuma, Bruce R. Blazar, Andrew L. Mellor, David H. Munn

×
  • ← Previous
  • 1
  • 2
  • …
  • 123
  • 124
  • 125
  • …
  • 135
  • 136
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts