Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 649 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 38
  • 39
  • 40
  • …
  • 64
  • 65
  • Next →
Kisspeptin modulates sexual and emotional brain processing in humans
Alexander N. Comninos, … , Stephen R. Bloom, Waljit S. Dhillo
Alexander N. Comninos, … , Stephen R. Bloom, Waljit S. Dhillo
Published January 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89519.
View: Text | PDF

Kisspeptin modulates sexual and emotional brain processing in humans

  • Text
  • PDF
Abstract

BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.

METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men.

RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood.

CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function.

FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

Authors

Alexander N. Comninos, Matthew B. Wall, Lysia Demetriou, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, Eugenii A. Rabiner, Christoph Hönigsperger, Meire Ribeiro Silva, Ole Kristian Brandtzaeg, Elsa Lundanes, Steven Ray Wilson, Rachel C. Brown, Sarah A. Thomas, Stephen R. Bloom, Waljit S. Dhillo

×

Nasal neuron PET imaging quantifies neuron generation and degeneration
Genevieve C. Van de Bittner, … , Mark W. Albers, Jacob M. Hooker
Genevieve C. Van de Bittner, … , Mark W. Albers, Jacob M. Hooker
Published January 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89162.
View: Text | PDF

Nasal neuron PET imaging quantifies neuron generation and degeneration

  • Text
  • PDF
Abstract

Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.

Authors

Genevieve C. Van de Bittner, Misha M. Riley, Luxiang Cao, Janina Ehses, Scott P. Herrick, Emily L. Ricq, Hsiao-Ying Wey, Michael J. O’Neill, Zeshan Ahmed, Tracey K. Murray, Jaclyn E. Smith, Changning Wang, Frederick A. Schroeder, Mark W. Albers, Jacob M. Hooker

×

Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy
Cristina Alcacer, … , Tim Fieblinger, Maria Angela Cenci
Cristina Alcacer, … , Tim Fieblinger, Maria Angela Cenci
Published January 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90132.
View: Text | PDF

Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy

  • Text
  • PDF
Abstract

Parkinson’s disease (PD) patients experience loss of normal motor function (hypokinesia), but can develop uncontrollable movements known as dyskinesia upon treatment with L-DOPA. Poverty or excess of movement in PD has been attributed to overactivity of striatal projection neurons forming either the indirect (iSPNs) or the direct (dSPNs) pathway, respectively. Here, we investigated the two pathways’ contribution to different motor features using SPN type–specific chemogenetic stimulation in rodent models of PD (PD mice) and L-DOPA–induced dyskinesia (LID mice). Using the activatory Gq-coupled human M3 muscarinic receptor (hM3Dq), we found that chemogenetic stimulation of dSPNs mimicked, while stimulation of iSPNs abolished the therapeutic action of L-DOPA in PD mice. In LID mice, hM3Dq stimulation of dSPNs exacerbated dyskinetic responses to L-DOPA, while stimulation of iSPNs inhibited these responses. In the absence of L-DOPA, only chemogenetic stimulation of dSPNs mediated through the Gs-coupled modified rat muscarinic M3 receptor (rM3Ds) induced appreciable dyskinesia in PD mice. Combining D2 receptor agonist treatment with rM3Ds-dSPN stimulation reproduced all symptoms of LID. These results demonstrate that dSPNs and iSPNs oppositely modulate both therapeutic and dyskinetic responses to dopamine replacement therapy in PD. We also show that chemogenetic stimulation of different signaling pathways in dSPNs leads to markedly different motor outcomes. Our findings have important implications for the design of effective antiparkinsonian and antidyskinetic drug therapies.

Authors

Cristina Alcacer, Laura Andreoli, Irene Sebastianutto, Johan Jakobsson, Tim Fieblinger, Maria Angela Cenci

×

Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy
Nigel A. Calcutt, … , Corinne G. Jolivalt, Paul Fernyhough
Nigel A. Calcutt, … , Corinne G. Jolivalt, Paul Fernyhough
Published January 17, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI88321.
View: Text | PDF

Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy

  • Text
  • PDF
Abstract

Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor–dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.

Authors

Nigel A. Calcutt, Darrell R. Smith, Katie Frizzi, Mohammad Golam Sabbir, Subir K. Roy Chowdhury, Teresa Mixcoatl-Zecuatl, Ali Saleh, Nabeel Muttalib, Randy Van der Ploeg, Joseline Ochoa, Allison Gopaul, Lori Tessler, Jürgen Wess, Corinne G. Jolivalt, Paul Fernyhough

×

M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss
Sophie J. Bradley, … , Christian C. Felder, Andrew B. Tobin
Sophie J. Bradley, … , Christian C. Felder, Andrew B. Tobin
Published December 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI87526.
View: Text | PDF

M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss

  • Text
  • PDF
Abstract

The current frontline symptomatic treatment for Alzheimer’s disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR–selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.

Authors

Sophie J. Bradley, Julie-Myrtille Bourgognon, Helen E. Sanger, Nicholas Verity, Adrian J. Mogg, David J. White, Adrian J. Butcher, Julie A. Moreno, Colin Molloy, Timothy Macedo-Hatch, Jennifer M. Edwards, Jurgen Wess, Robert Pawlak, David J. Read, Patrick M. Sexton, Lisa M. Broad, Joern R. Steinert, Giovanna R. Mallucci, Arthur Christopoulos, Christian C. Felder, Andrew B. Tobin

×

Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model
Cordula Rakers, Gabor C. Petzold
Cordula Rakers, Gabor C. Petzold
Published December 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI89354.
View: Text | PDF

Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model

  • Text
  • PDF
Abstract

Stroke is one of the most common diseases and a leading cause of death and disability. Cessation of cerebral blood flow (CBF) leads to cell death in the infarct core, but tissue surrounding the core has the potential to recover if local reductions in CBF are restored. In these areas, detrimental peri-infarct depolarizations (PIDs) contribute to secondary infarct growth and negatively affect stroke outcome. However, the cellular pathways underlying PIDs have remained unclear. Here, we have used in vivo multiphoton microscopy, laser speckle imaging of CBF, and electrophysiological recordings in a mouse model of focal ischemia to demonstrate that PIDs are associated with a strong increase of intracellular calcium in astrocytes and neurons. We found that astroglial calcium elevations during PIDs are mediated by inositol triphosphate receptor type 2–dependent (IP3R2-dependent) release from internal stores. Importantly, Ip3r2-deficient mice displayed a reduction of PID frequency and overall PID burden and showed increased neuronal survival after stroke. These effects were not related to local CBF changes in response to PIDs. However, we showed that the release and extracellular accumulation of glutamate during PIDs is strongly curtailed in Ip3r2-deficient mice, resulting in ameliorated calcium overload in neurons and astrocytes. Together, these data implicate astroglial calcium pathways as potential targets for stroke therapy.

Authors

Cordula Rakers, Gabor C. Petzold

×

TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage
Roslyn A. Taylor, … , J. Christopher Love, Lauren H. Sansing
Roslyn A. Taylor, … , J. Christopher Love, Lauren H. Sansing
Published November 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88647.
View: Text | PDF

TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage

  • Text
  • PDF
Abstract

Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury.

Authors

Roslyn A. Taylor, Che-Feng Chang, Brittany A. Goods, Matthew D. Hammond, Brian Mac Grory, Youxi Ai, Arthur F. Steinschneider, Stephen C. Renfroe, Michael H. Askenase, Louise D. McCullough, Scott E. Kasner, Michael T. Mullen, David A. Hafler, J. Christopher Love, Lauren H. Sansing

×

Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension
Giuseppe Faraco, … , Joseph Anrather, Costantino Iadecola
Giuseppe Faraco, … , Joseph Anrather, Costantino Iadecola
Published November 14, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86950.
View: Text | PDF

Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension

  • Text
  • PDF
Abstract

Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.

Authors

Giuseppe Faraco, Yukio Sugiyama, Diane Lane, Lidia Garcia Bonilla, Haejoo Chang, Monica M. Santisteban, Gianfranco Racchumi, Michelle Murphy, Nico Van Rooijen, Joseph Anrather, Costantino Iadecola

×

Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control
Ming-Kai Pan, … , Wen-Sung Lai, Chung-Chin Kuo
Ming-Kai Pan, … , Wen-Sung Lai, Chung-Chin Kuo
Published October 31, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88170.
View: Text | PDF

Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control

  • Text
  • PDF
Abstract

Neuronal oscillations at beta frequencies (20–50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson’s disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy.

Authors

Ming-Kai Pan, Sheng-Han Kuo, Chun-Hwei Tai, Jyun-You Liou, Ju-Chun Pei, Chia-Yuan Chang, Yi-Mei Wang, Wen-Chuan Liu, Tien-Rei Wang, Wen-Sung Lai, Chung-Chin Kuo

×

Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels
Laura Rué, … , Xavier Estivill, Eulàlia Martí
Laura Rué, … , Xavier Estivill, Eulàlia Martí
Published October 10, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83185.
View: Text | PDF

Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels

  • Text
  • PDF
Abstract

Huntington’s disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (HTT) gene exon 1. This expansion encodes a mutant protein whose abnormal function is traditionally associated with HD pathogenesis; however, recent evidence has also linked HD pathogenesis to RNA stable hairpins formed by the mutant HTT expansion. Here, we have shown that a locked nucleic acid–modified antisense oligonucleotide complementary to the CAG repeat (LNA-CTG) preferentially binds to mutant HTT without affecting HTT mRNA or protein levels. LNA-CTGs produced rapid and sustained improvement of motor deficits in an R6/2 mouse HD model that was paralleled by persistent binding of LNA-CTG to the expanded HTT exon 1 transgene. Motor improvement was accompanied by a pronounced recovery in the levels of several striatal neuronal markers severely impaired in R6/2 mice. Furthermore, in R6/2 mice, LNA-CTG blocked several pathogenic mechanisms caused by expanded CAG RNA, including small RNA toxicity and decreased Rn45s expression levels. These results suggest that LNA-CTGs promote neuroprotection by blocking the detrimental activity of CAG repeats within HTT mRNA. The present data emphasize the relevance of expanded CAG RNA to HD pathogenesis, indicate that inhibition of HTT expression is not required to reverse motor deficits, and further suggest a therapeutic potential for LNA-CTG in polyglutamine disorders.

Authors

Laura Rué, Mónica Bañez-Coronel, Jordi Creus-Muncunill, Albert Giralt, Rafael Alcalá-Vida, Gartze Mentxaka, Birgit Kagerbauer, M. Teresa Zomeño-Abellán, Zeus Aranda, Veronica Venturi, Esther Pérez-Navarro, Xavier Estivill, Eulàlia Martí

×
  • ← Previous
  • 1
  • 2
  • …
  • 38
  • 39
  • 40
  • …
  • 64
  • 65
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts