Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Metabolism

  • 628 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 34
  • 35
  • 36
  • …
  • 62
  • 63
  • Next →
Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis
Donna M. Conlon, … , Jing Liu, Henry N. Ginsberg
Donna M. Conlon, … , Jing Liu, Henry N. Ginsberg
Published September 6, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86028.
View: Text | PDF

Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis

  • Text
  • PDF
Abstract

Inhibition of VLDL secretion reduces plasma levels of atherogenic apolipoprotein B (apoB) lipoproteins but can also cause hepatic steatosis. Approaches targeting apoB synthesis, which lies upstream of VLDL secretion, have potential to effectively reduce dyslipidemia but can also lead to hepatic accumulation of unsecreted triglycerides (TG). Here, we found that treating mice with apoB antisense oligonucleotides (ASOs) for 6 weeks decreased VLDL secretion and plasma cholesterol without causing steatosis. The absence of steatosis was linked to an increase in ER stress in the first 3 weeks of ASO treatment, followed by development of ER autophagy at the end of 6 weeks of treatment. The latter resulted in increased fatty acid (FA) oxidation that was inhibited by both chloroquine and 3-methyl adenine, consistent with trafficking of ER TG through the autophagic pathway before oxidation. These findings support the concept that inhibition of apoB synthesis traps lipids that have been transferred to the ER by microsomal TG transfer protein (MTP), inducing ER stress. ER stress then triggers ER autophagy and subsequent lysosomal lipolysis of TG, followed by mitochondrial oxidation of released FA, leading to prevention of steatosis. The identification of this pathway indicates that inhibition of VLDL secretion remains a viable target for therapies aiming to reduce circulating levels of atherogenic apoB lipoproteins.

Authors

Donna M. Conlon, Tiffany Thomas, Tatyana Fedotova, Antonio Hernandez-Ono, Gilbert Di Paolo, Robin B. Chan, Kelly Ruggles, Sarah Gibeley, Jing Liu, Henry N. Ginsberg

×

A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution
Adriano Maida, … , Stephan Herzig, Adam J. Rose
Adriano Maida, … , Stephan Herzig, Adam J. Rose
Published August 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85946.
View: Text | PDF

A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

  • Text
  • PDF
Abstract

Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response–driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency–induced liver NUPR1/FGF21 axis.

Authors

Adriano Maida, Annika Zota, Kim A. Sjøberg, Jonas Schumacher, Tjeerd P. Sijmonsma, Anja Pfenninger, Marie M. Christensen, Thomas Gantert, Jessica Fuhrmeister, Ulrike Rothermel, Dieter Schmoll, Mathias Heikenwälder, Juan L. Iovanna, Kerstin Stemmer, Bente Kiens, Stephan Herzig, Adam J. Rose

×

MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling
Byungyong Ahn, … , Rick B. Vega, Daniel P. Kelly
Byungyong Ahn, … , Rick B. Vega, Daniel P. Kelly
Published August 8, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI87382.
View: Text | PDF

MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling

  • Text
  • PDF
Abstract

Intramuscular lipid accumulation is a common manifestation of chronic caloric excess and obesity that is strongly associated with insulin resistance. The mechanistic links between lipid accumulation in myocytes and insulin resistance are not completely understood. In this work, we used a high-throughput chemical biology screen to identify a small-molecule probe, SBI-477, that coordinately inhibited triacylglyceride (TAG) synthesis and enhanced basal glucose uptake in human skeletal myocytes. We then determined that SBI-477 stimulated insulin signaling by deactivating the transcription factor MondoA, leading to reduced expression of the insulin pathway suppressors thioredoxin-interacting protein (TXNIP) and arrestin domain–containing 4 (ARRDC4). Depleting MondoA in myocytes reproduced the effects of SBI-477 on glucose uptake and myocyte lipid accumulation. Furthermore, an analog of SBI-477 suppressed TXNIP expression, reduced muscle and liver TAG levels, enhanced insulin signaling, and improved glucose tolerance in mice fed a high-fat diet. These results identify a key role for MondoA-directed programs in the coordinated control of myocyte lipid balance and insulin signaling and suggest that this pathway may have potential as a therapeutic target for insulin resistance and lipotoxicity.

Authors

Byungyong Ahn, Mangala M. Soundarapandian, Hampton Sessions, Satyamaheshwar Peddibhotla, Gregory P. Roth, Jian-Liang Li, Eliot Sugarman, Ada Koo, Siobhan Malany, Miao Wang, Kyungmoo Yea, Jeanne Brooks, Teresa C. Leone, Xianlin Han, Rick B. Vega, Daniel P. Kelly

×

ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors
Philip L.S.M. Gordts, … , Joseph L. Witztum, Jeffrey D. Esko
Philip L.S.M. Gordts, … , Joseph L. Witztum, Jeffrey D. Esko
Published July 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86610.
View: Text | PDF

ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors

  • Text
  • PDF
Abstract

Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III–targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO–induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III–rich or ApoC-III–depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis.

Authors

Philip L.S.M. Gordts, Ryan Nock, Ni-Huiping Son, Bastian Ramms, Irene Lew, Jon C. Gonzales, Bryan E. Thacker, Debapriya Basu, Richard G. Lee, Adam E. Mullick, Mark J. Graham, Ira J. Goldberg, Rosanne M. Crooke, Joseph L. Witztum, Jeffrey D. Esko

×

IRF3 promotes adipose inflammation and insulin resistance and represses browning
Manju Kumari, … , Rasheed Ahmad, Evan D. Rosen
Manju Kumari, … , Rasheed Ahmad, Evan D. Rosen
Published July 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86080.
View: Text | PDF

IRF3 promotes adipose inflammation and insulin resistance and represses browning

  • Text
  • PDF
Abstract

The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat–fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.

Authors

Manju Kumari, Xun Wang, Louise Lantier, Anna Lyubetskaya, Jun Eguchi, Sona Kang, Danielle Tenen, Hyun Cheol Roh, Xingxing Kong, Lawrence Kazak, Rasheed Ahmad, Evan D. Rosen

×

SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity
Vanessa Schmidt, … , Gunilla Olivecrona, Thomas E. Willnow
Vanessa Schmidt, … , Gunilla Olivecrona, Thomas E. Willnow
Published June 20, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84708.
View: Text | PDF

SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity

  • Text
  • PDF
Abstract

In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer’s disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.

Authors

Vanessa Schmidt, Nadja Schulz, Xin Yan, Annette Schürmann, Stefan Kempa, Matthias Kern, Matthias Blüher, Matthew N. Poy, Gunilla Olivecrona, Thomas E. Willnow

×

Increased mitochondrial arginine metabolism supports bioenergetics in asthma
Weiling Xu, … , Satish C. Kalhan, Serpil C. Erzurum
Weiling Xu, … , Satish C. Kalhan, Serpil C. Erzurum
Published May 23, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82925.
View: Text | PDF

Increased mitochondrial arginine metabolism supports bioenergetics in asthma

  • Text
  • PDF
Abstract

High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.

Authors

Weiling Xu, Sudakshina Ghosh, Suzy A.A. Comhair, Kewal Asosingh, Allison J. Janocha, Deloris A. Mavrakis, Carole D. Bennett, Lourdes L. Gruca, Brian B. Graham, Kimberly A. Queisser, Christina C. Kao, Samuel H. Wedes, John M. Petrich, Rubin M. Tuder, Satish C. Kalhan, Serpil C. Erzurum

×

Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model
Erez M. Bublil, … , Viktor Kožich, Jan P. Kraus
Erez M. Bublil, … , Viktor Kožich, Jan P. Kraus
Published May 16, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85396.
View: Text | PDF

Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model

  • Text
  • PDF
Abstract

Homocystinuria, which typically results from cystathionine β-synthase (CBS) deficiency, is the most common defect of sulfur amino acid metabolism. CBS condenses homocysteine and serine to cystathionine that is then converted to cysteine. Individuals with homocystinuria have markedly elevated plasma levels of homocysteine and methionine and reduced concentrations of cystathionine and cysteine. Clinical disease manifestations include thromboembolism and neuropsychiatric, ocular, and skeletal complications. Here, we have shown that administration of PEGylated CBS into the circulation of homocystinuria model mice alters the extra- and intracellular equilibrium of sulfur amino acids, resulting in a decrease of approximately 75% in plasma total homocysteine (tHcy) and normalization of cysteine concentrations. Moreover, the decrease in homocysteine and the normalization of cysteine in PEGylated CBS–treated model mice were accompanied by improvement of histopathological liver symptoms and increased survival. Together, these data suggest that CBS enzyme replacement therapy (ERT) is a promising approach for the treatment of homocystinuria and that ERT for metabolic diseases may not necessitate introduction of the deficient enzyme into its natural intracellular compartment.

Authors

Erez M. Bublil, Tomas Majtan, Insun Park, Richard S. Carrillo, Helena Hůlková, Jakub Krijt, Viktor Kožich, Jan P. Kraus

×

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis
Jason J. Winnick, … , Eric Allen, Alan D. Cherrington
Jason J. Winnick, … , Eric Allen, Alan D. Cherrington
Published May 3, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI79895.
View: Text | PDF

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

  • Text
  • PDF
Abstract

Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.

Authors

Jason J. Winnick, Guillaume Kraft, Justin M. Gregory, Dale S. Edgerton, Phillip Williams, Ian A. Hajizadeh, Maahum Z. Kamal, Marta Smith, Ben Farmer, Melanie Scott, Doss Neal, E. Patrick Donahue, Eric Allen, Alan D. Cherrington

×

Hypomorphism of Fto and Rpgrip1l causes obesity in mice
George Stratigopoulos, … , Dieter Egli, Rudolph L. Leibel
George Stratigopoulos, … , Dieter Egli, Rudolph L. Leibel
Published April 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85526.
View: Text | PDF

Hypomorphism of Fto and Rpgrip1l causes obesity in mice

  • Text
  • PDF
Abstract

Noncoding polymorphisms in the fat mass and obesity-associated (FTO) gene represent common alleles that are strongly associated with effects on food intake and adiposity in humans. Previous studies have suggested that the obesity-risk allele rs8050136 in the first intron of FTO alters a regulatory element recognized by the transcription factor CUX1, thereby leading to decreased expression of FTO and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Here, we evaluated the effects of rs8050136 and another potential CUX1 element in rs1421085 on expression of nearby genes in human induced pluripotent stem cell–derived (iPSC-derived) neurons. There were allele-dosage effects on FTO, RPGRIP1L, and AKT-interacting protein (AKTIP) expression, but expression of other vicinal genes, including IRX3, IRX5, and RBL2, which have been implicated in mediating functional effects, was not altered. In vivo manipulation of CUX1, Fto, and/or Rpgrip1l expression in mice affected adiposity in a manner that was consistent with CUX1 influence on adiposity via remote effects on Fto and Rpgrip1l expression. In support of a mechanism, mice hypomorphic for Rpgrip1l exhibited hyperphagic obesity, as the result of diminished leptin sensitivity in Leprb-expressing neurons. Together, the results of this study indicate that the effects of FTO-associated SNPs on energy homeostasis are due in part to the effects of these genetic variations on hypothalamic FTO, RPGRIP1L, and possibly other genes.

Authors

George Stratigopoulos, Lisa Cole Burnett, Richard Rausch, Richard Gill, David Barth Penn, Alicja A. Skowronski, Charles A. LeDuc, Anthony J. Lanzano, Pumin Zhang, Daniel R. Storm, Dieter Egli, Rudolph L. Leibel

×
  • ← Previous
  • 1
  • 2
  • …
  • 34
  • 35
  • 36
  • …
  • 62
  • 63
  • Next →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts