Sustaining the strong rhythmic interactions between cellular adaptations and environmental cues has been posited as essential for preserving the physiological and behavioral alignment of an organism to the proper phase of the daily light/dark (LD) cycle. Here, we demonstrate that mitochondria and synaptic input organization of suprachiasmatic (SCN) vasoactive intestinal peptide–expressing (VIP-expressing) neurons showed circadian rhythmicity. Perturbed mitochondrial dynamics achieved by conditional ablation of the fusogenic protein mitofusin 2 (Mfn2) in VIP neurons caused disrupted circadian oscillation in mitochondria and synapses in SCN VIP neurons, leading to desynchronization of entrainment to the LD cycle in Mfn2-deficient mice that resulted in an advanced phase angle of their locomotor activity onset, alterations in core body temperature, and sleep-wake amount and architecture. Our data provide direct evidence of circadian SCN clock machinery dependence on high-performance, Mfn2-regulated mitochondrial dynamics in VIP neurons for maintaining the coherence in daily biological rhythms of the mammalian organism.
Milan Stoiljkovic, Jae Eun Song, Hee-kyung Hong, Heiko Endle, Luis Varela, Jonatas Catarino, Xiao-Bing Gao, Zong-Wu Liu, Peter Sotonyi, Sabrina Diano, Jonathan Cedernaes, Joseph T. Bass, Tamas L. Horvath
Facioscapulohumeral muscular dystrophy (FSHD) is a genetic muscle disease caused by ectopic expression of the toxic protein DUX4, resulting in muscle weakness. However, the mechanism by which DUX4 exerts its toxicity remains unclear. In this study, we observed abnormal iron accumulation in muscles of patients with FSHD and in muscle-specific DUX4-expressing (DUX4-Tg) mice. Treatment with iron chelators, an iron-deficient diet, and genetic modifications inhibiting intracellular uptake of iron did not improve but rather exacerbated FSHD pathology in DUX4-Tg mice. Unexpectedly, however, iron supplementation, either from a high-iron diet or intravenous iron administration, resulted in remarkable improvement in grip strength and running performance in DUX4-Tg mice. Iron supplementation suppressed abnormal iron accumulation and the ferroptosis-related pathway involving increased lipid peroxidation in DUX4-Tg muscle. Muscle-specific DUX4 expression led to retinal vasculopathy, a part of FSHD pathology, which was prevented by iron administration. Furthermore, high-throughput compound screening of the ferroptosis pathway identified drug candidates including Ferrostatin-1 (Fer-1), a potent inhibitor of lipid peroxidation. Treatment with Fer-1 dramatically improved physical function in DUX4-Tg mice. Our findings demonstrate that DUX4-provoked toxicity is involved in the activation of the ferroptosis-related pathway and that supplementary iron could be a promising and readily available therapeutic option for FSHD.
Kodai Nakamura, Huascar-Pedro Ortuste-Quiroga, Naoki Horii, Shin Fujimaki, Toshiro Moroishi, Keiichi I. Nakayama, Shinjiro Hino, Yoshihiko Saito, Ichizo Nishino, Yusuke Ono
Elevated cholesterol poses cardiovascular risks. The glucocorticoid receptor (GR) harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene en-coding the GR, rs6190, associated with increased cholesterol in women according to UK Biobank and All Of Us datasets. In SNP-genocopying mice, we found that the SNP enhanced hepatic GR activity to transactivate Pcsk9 and Bhlhe40, negative regulators of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) re-ceptors respectively. In mice, the SNP was sufficient to elevate circulating cholesterol across all lipoprotein frac-tions and the risk and severity of atherosclerotic lesions on the pro-atherogenic hAPOE*2/*2 background. The SNP effect on atherosclerosis was blocked by in vivo liver knockdown of Pcsk9 and Bhlhe40. Also, corti-costerone and testosterone were protective against the mutant GR program in cholesterol and atherosclerosis in male mice, while the SNP effect was additive to estrogen loss in females. Remarkably, we found that the mu-tant GR program was conserved in human hepatocyte-like cells using CRISPR-engineered, SNP-genocopying human induced pluripotent stem cells (hiPSCs). Taken together, our study leverages a non-rare human variant to uncover a novel GR-dependent mechanism contributing to atherogenic risk, particularly in women.
Hima Bindu Durumutla, April Haller, Greta Noble, Ashok Daniel Prabakaran, Kevin McFarland, Hannah Latimer, Akanksha Rajput, Olukunle Akinborewa, Bahram Namjou-Khales, David Y. Hui, Mattia Quattrocelli
Pro-inflammatory signaling in adipocytes is essential for healthy adipose expansion, remodeling, and tissue integrity. We investigated the effects of targeting inflammation in either adipocytes or mammary gland epithelial cells, in the context of mammary tumor development, by locally expressing the anti-inflammatory adenoviral RIDα/β protein complex in a cell type-specific manner. Suppression of adipocyte inflammation (“RIDad mice”) in a mammary tumor model driven by MMTV-PyMT (“PyMT-RIDad mice”) led to an elevated number of tumor-associated macrophages (TAMs) and upregulation of immunoregulatory molecules in the mammary fat pad (MFP). This was accompanied by metabolic dysfunction and abnormal mammary gland development. Importantly, this phenotype correlated with accelerated mammary tumor onset, enhanced growth, and lung metastasis. Tumors in PyMT-RIDad mice exhibited upregulated CD36 expression, suggesting enhanced fatty acid uptake. Conversely, suppression of inflammation in mammary gland epithelial cells by RIDα/β expression (“RIDMMTV mice”) decelerated mammary tumor growth without affecting tumor onset or macrophage accumulation. These findings highlight the differential impact on tumor development exerted through the suppression of inflammatory signals in different cell types in the microenvironment. Our results underscore the role of the suppression of adipocyte inflammation leading to a tumor-friendly microenvironment, promoting mammary cancer progression. This study sheds light on the complex interplay between inflammation, specifically driven by the adipocyte, in breast cancer pathogenesis.
Dae-Seok Kim, Toshiharu Onodera, Jan-Bernd Funcke, Kyounghee Min, Qingzhang Zhu, Qian Lin, Shiuhwei Chen, Chanmin Joung, Min Kim, R. Max Wynn, Joselin Velasco, Charlotte Lee, Megan Virostek, Chao Li, Philipp E. Scherer
Atherosclerosis arises from disrupted cholesterol metabolism, notably impaired macrophage cholesterol efflux leading to foam cell formation. Through single-cell and bulk RNA sequencing, we identified Listerin as a regulator of macrophage cholesterol metabolism. Listerin expression increased during atherosclerosis progression in humans and rodents. Its deficiency suppressed cholesterol efflux, promoted foam cell formation, and exacerbated plaque features (macrophage infiltration, lipid deposition, necrotic cores) in macrophage-specific knockout mice. Conversely, Listerin overexpression attenuated these atherosclerotic manifestations. Mechanistically, Listerin stabilizes ABCA1, a key cholesterol efflux mediator, by catalyzing K63-linked polyubiquitination at residues K1884/K1957, countering ESCRT-mediated lysosomal degradation of ABCA1 induced by oxLDL. ABCA1 agonist Erythrodiol restored cholesterol efflux in Listerin-deficient macrophages, while ABCA1 knockout abolished Listerin's effects in THP-1 cells. This study establishes Listerin as a protective factor in atherosclerosis via post-translational stabilization of ABCA1, offering a potential therapeutic strategy targeting ABCA1 ubiquitination to enhance cholesterol efflux.
Lei Cao, Jie Zhang, Liwen Yu, Wei Yang, Wenqian Qi, Ruiqing Ren, Yapeng Liu, Yonghao Hou, Yu Cao, Qian Li, Xiaohong Wang, Zhengguo zhang, Bo Li, Wenhai Sui, Yun Zhang, Chengjiang Gao, Cheng Zhang, Meng Zhang
The incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors coordinate β-cell secretion that is proportional to nutrient intake. This effect permits consistent and restricted glucose excursions across a range of carbohydrate intake. The canonical signaling downstream of ligand-activated incretin receptors involves coupling to Gɑs protein and generation of intracellular cyclic adenosine monophosphate (cAMP). However, recent reports have highlighted the importance of additional signaling nodes engaged by incretin receptors, including other G-proteins and β-arrestin proteins. Here, the importance of Gɑs signaling was tested in mice with conditional, post-developmental β-cell deletion of Gnas (encoding Gɑs) under physiological and pharmacological conditions. Deletion of Gɑs/cAMP signaling induced immediate and profound hyperglycemia that responded minimally to incretin receptor agonists, a sulfonylurea, or bethanechol. While islet area and insulin content were not affected in Gnasβcell-/-, perifusion of isolated islets demonstrated impaired responses to glucose, incretins, acetylcholine and IBMX. In the absence of Gɑs, incretin-stimulated insulin secretion was impaired but not absent, with some contribution from Gɑq signaling. Collectively, these findings validate a central role for cAMP to mediate incretin signaling, but also demonstrate broad impairment of insulin secretion in the absence of Gɑs that causes both fasting hyperglycemia and glucose intolerance.
Megan E. Capozzi, David Bouslov, Ashot Sargsyan, Michelle Y. Chan, Sarah M. Gray, Katrina Viloria, Akshay Bareja, Jonathan D. Douros, Sophie L. Lewandowski, Jason C.L. Tong, Annie Hasib, Federica Cuozzo, Elizabeth C. Ross, Matthew W. Foster, Lee S. Weinstein, Mehboob A. Hussain, Matthew J. Merrins, Francis S. Willard, Mark O. Huising, Kyle W. Sloop, David J. Hodson, David A. D'Alessio, Jonathan E. Campbell
Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. While the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNFα alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNFα impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNFα-driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNFα downregulates STX17, a key mediator of autophagosome–lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNFα disrupts hemostasis through autophagy inhibition, highlighting TNFα as a critical regulator of platelet metabolism and function. This study provides new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.
Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C. Petrey, Gabriela Dveksler, Gerardo P. Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P. Wartchow, Ken Jones, Lucas H. Ting, Catherine Jankowski, Marguerite R. Kelher, Marilyn Manco-Johnson, Marie L. Feser, Kevin D. Deane, Travis Nemkov, Angelo D'Alessandro, Andrew Thorburn, Paola Maycotte, José A. López, Pavel Davizon-Castillo
Pancreatic islet microvasculature is essential for optimal islet function and glucose homeostasis. However, islet vessel pathogenesis in obesity and its role in the manifestation of metabolic disorders remain understudied. Here, we depict the time-resolved decline of intra-islet endothelial cell responsiveness to vascular endothelial cell growth factor A (VEGF-A) and islet vessel function in a mouse model of diet-induced obesity. Longitudinal imaging of sentinel islets transplanted into mouse eyes revealed substantial vascular remodeling and diminished VEGF-A response in islet endothelial cells after 12 weeks of western diet (WD) feeding. This led to islet vessel barrier dysfunction and hemodynamic dysregulation, delaying transportation of secreted insulin into the blood. Notably, islet vessels exhibited a metabolic memory of previous WD feeding. Neither VEGF-A sensitivity nor the other vascular alterations was fully restored by control diet (CD) refeeding, resulting in modest yet significant impairment in glucose clearance despite normalized insulin sensitivity. Mechanistic analysis implicated hyperactivation of atypical protein kinase C (aPKC) under both WD and recovery conditions, which inhibited VEGF receptor 2 (VEGFR2) internalization and blunted VEGF-A triggered signal transduction in endothelial cells. In summary, prolonged WD feeding causes irreversible islet endothelial cell desensitization to VEGF-A and islet vessel dysfunction, directly undermining glucose homeostasis.
Yan Xiong, Andrea Dicker, Montse Visa, Erwin Ilegems, Per-Olof Berggren
Acute-on-chronic liver failure (ACLF) is a leading cause of global liver-related mortality. Bacterial infection, especially in patients with decompensated cirrhosis (DC), commonly triggers ACLF and is difficult to treat with antibiotics. Therefore, finding alternative strategies for preventing and managing bacterial infection is an urgent priority. Here, we observed that infected DC patients and ACLF mice exhibited lower fecal panose levels than uninfected controls. Megamonas funiformis (M. funiformis), with 4α-glucanosyltransferase (4αGT) as a key enzyme for panose production, was identified as a potential panose producer. Animal experiments demonstrated that panose efficiently reduced liver injury and extended survival in ACLF mice by mitigating bacterial infection. Further results revealed that panose enhanced resistance to bacterial infection by inhibiting oxidative stress-induced gut barrier disruption, thereby limiting bacterial dissemination. Mechanistically, panose interacted with the solute carrier family 7 member 11 (SLC7A11, also known as xCT) protein to boost antioxidant glutathione (GSH) levels in intestinal epithelial cells. These findings highlight panose's potential in preventing bacterial infection, offering a valuable insight into mitigating ACLF progression.
Jiaxin Li, Shihao Xie, Meiling Chen, Changze Hong, Yuqi Chen, Fengyuan Lyu, Niexin Tang, Tianqi Chen, Lingyan Zhao, Weihao Zou, Hongjuan Peng, Jingna Bao, Peng Gu, Bernd Schnabl, Jinjun Chen, Peng Chen
White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic co-morbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved microRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed high fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits pro-fibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an anti-fibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.
Pradip K. Saha, Robert Sharp, Aaron R. Cox, Rabie Habib, Michael J. Bolt, Jessica B. Felix, Claudia E. Ramirez Bustamante, Xin Li, Sung Yun Jung, Kang Ho Kim, Kai Sun, Huaizhu Wu, Samuel Klein, Sean M. Hartig