Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,403 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 84
  • 85
  • 86
  • …
  • 140
  • 141
  • Next →
Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia
Paulina J. Paszkiewicz, … , Stanley R. Riddell, Dirk H. Busch
Paulina J. Paszkiewicz, … , Stanley R. Riddell, Dirk H. Busch
Published October 17, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84813.
View: Text | PDF

Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

  • Text
  • PDF
Abstract

The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

Authors

Paulina J. Paszkiewicz, Simon P. Fräßle, Shivani Srivastava, Daniel Sommermeyer, Michael Hudecek, Ingo Drexler, Michel Sadelain, Lingfeng Liu, Michael C. Jensen, Stanley R. Riddell, Dirk H. Busch

×

mTOR has distinct functions in generating versus sustaining humoral immunity
Derek D. Jones, … , Brendan M. Weiss, David Allman
Derek D. Jones, … , Brendan M. Weiss, David Allman
Published October 17, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86504.
View: Text | PDF

mTOR has distinct functions in generating versus sustaining humoral immunity

  • Text
  • PDF
Abstract

Little is known about the role of mTOR signaling in plasma cell differentiation and function. Furthermore, for reasons not understood, mTOR inhibition reverses antibody-associated disease in a murine model of systemic lupus erythematosus. Here, we have demonstrated that induced B lineage–specific deletion of the gene encoding RAPTOR, an essential signaling adaptor for rapamycin-sensitive mTOR complex 1 (mTORC1), abrogated the generation of antibody-secreting plasma cells in mice. Acute treatment with rapamycin recapitulated the effects of RAPTOR deficiency, and both strategies led to the ablation of newly formed plasma cells in the spleen and bone marrow while also obliterating preexisting germinal centers. Surprisingly, although perturbing mTOR activity caused a profound decline in serum antibodies that were specific for exogenous antigen or DNA, frequencies of long-lived bone marrow plasma cells were unaffected. Instead, mTORC1 inhibition led to decreased expression of immunoglobulin-binding protein (BiP) and other factors needed for robust protein synthesis. Consequently, blockade of antibody synthesis was rapidly reversed after termination of rapamycin treatment. We conclude that mTOR signaling plays critical but diverse roles in early and late phases of antibody responses and plasma cell differentiation.

Authors

Derek D. Jones, Brian T. Gaudette, Joel R. Wilmore, Irene Chernova, Alexandra Bortnick, Brendan M. Weiss, David Allman

×

Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis
Jennifer J. Chia, … , Jessica K. Gordon, Theresa T. Lu
Jennifer J. Chia, … , Jessica K. Gordon, Theresa T. Lu
Published October 10, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85740.
View: Text | PDF

Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis

  • Text
  • PDF
Abstract

Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases.

Authors

Jennifer J. Chia, Tong Zhu, Susan Chyou, Dragos C. Dasoveanu, Camila Carballo, Sha Tian, Cynthia M. Magro, Scott Rodeo, Robert F. Spiera, Nancy H. Ruddle, Timothy E. McGraw, Jeffrey L. Browning, Robert Lafyatis, Jessica K. Gordon, Theresa T. Lu

×

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies
Marco Ruella, … , Stephan A. Grupp, Saar Gill
Marco Ruella, … , Stephan A. Grupp, Saar Gill
Published August 29, 2016
Citation Information: J Clin Invest. 2016;126(10):3814-3826. https://doi.org/10.1172/JCI87366.
View: Text | PDF

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

  • Text
  • PDF
Abstract

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies

Authors

Marco Ruella, David M. Barrett, Saad S. Kenderian, Olga Shestova, Ted J. Hofmann, Jessica Perazzelli, Michael Klichinsky, Vania Aikawa, Farzana Nazimuddin, Miroslaw Kozlowski, John Scholler, Simon F. Lacey, Jan J. Melenhorst, Jennifer J.D. Morrissette, David A. Christian, Christopher A. Hunter, Michael Kalos, David L. Porter, Carl H. June, Stephan A. Grupp, Saar Gill

×

Mast cell desensitization inhibits calcium flux and aberrantly remodels actin
W.X. Gladys Ang, … , A. Wesley Burks, Soman N. Abraham
W.X. Gladys Ang, … , A. Wesley Burks, Soman N. Abraham
Published September 26, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI87492.
View: Text | PDF

Mast cell desensitization inhibits calcium flux and aberrantly remodels actin

  • Text
  • PDF
Abstract

Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses.

Authors

W.X. Gladys Ang, Alison M. Church, Mike Kulis, Hae Woong Choi, A. Wesley Burks, Soman N. Abraham

×

FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy
Willem S. Lexmond, … , Scott B. Snapper, Edda Fiebiger
Willem S. Lexmond, … , Scott B. Snapper, Edda Fiebiger
Published September 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85129.
View: Text | PDF

FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy

  • Text
  • PDF
Abstract

In addition to the infectious consequences of immunodeficiency, patients with Wiskott-Aldrich syndrome (WAS) often suffer from poorly understood exaggerated immune responses that result in autoimmunity and elevated levels of serum IgE. Here, we have shown that WAS patients and mice deficient in WAS protein (WASP) frequently develop IgE-mediated reactions to common food allergens. WASP-deficient animals displayed an adjuvant-free IgE-sensitization to chow antigens that was most pronounced for wheat and soy and occurred under specific pathogen–free as well as germ-free housing conditions. Conditional deletion of Was in FOXP3+ Tregs resulted in more severe Th2-type intestinal inflammation than that observed in mice with global WASP deficiency, indicating that allergic responses to food allergens are dependent upon loss of WASP expression in this immune compartment. While WASP-deficient Tregs efficiently contained Th1- and Th17-type effector differentiation in vivo, they failed to restrain Th2 effector responses that drive allergic intestinal inflammation. Loss of WASP was phenotypically associated with increased GATA3 expression in effector memory FOXP3+ Tregs, but not in naive-like FOXP3+ Tregs, an effect that occurred independently of increased IL-4 signaling. Our results reveal a Treg-specific role for WASP that is required for prevention of Th2 effector cell differentiation and allergic sensitization to dietary antigens.

Authors

Willem S. Lexmond, Jeremy A. Goettel, Jonathan J. Lyons, Justin Jacobse, Marion M. Deken, Monica G. Lawrence, Thomas H. DiMaggio, Daniel Kotlarz, Elizabeth Garabedian, Paul Sackstein, Celeste C. Nelson, Nina Jones, Kelly D. Stone, Fabio Candotti, Edmond H.H.M. Rings, Adrian J. Thrasher, Joshua D. Milner, Scott B. Snapper, Edda Fiebiger

×

Different activation signals induce distinct mast cell degranulation strategies
Nicolas Gaudenzio, … , Eric Espinosa, Stephen J. Galli
Nicolas Gaudenzio, … , Eric Espinosa, Stephen J. Galli
Published September 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85538.
View: Text | PDF

Different activation signals induce distinct mast cell degranulation strategies

  • Text
  • PDF
Abstract

Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation.

Authors

Nicolas Gaudenzio, Riccardo Sibilano, Thomas Marichal, Philipp Starkl, Laurent L. Reber, Nicolas Cenac, Benjamin D. McNeil, Xinzhong Dong, Joseph D. Hernandez, Ronit Sagi-Eisenberg, Ilan Hammel, Axel Roers, Salvatore Valitutti, Mindy Tsai, Eric Espinosa, Stephen J. Galli

×

Aging promotes acquisition of naive-like CD8+ memory T cell traits and enhanced functionalities
Jens Eberlein, … , Eric T. Clambey, Dirk Homann
Jens Eberlein, … , Eric T. Clambey, Dirk Homann
Published September 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88546.
View: Text | PDF

Aging promotes acquisition of naive-like CD8+ memory T cell traits and enhanced functionalities

  • Text
  • PDF
Abstract

Protective T cell memory is an acquired trait that is contingent upon the preservation of its constituents and therefore vulnerable to the potentially deleterious effects of organismal aging. Here, however, we have found that long-term T cell memory in a natural murine host-pathogen system can substantially improve over time. Comprehensive molecular, phenotypic, and functional profiling of aging antiviral CD8+ memory T cells (CD8+ TM) revealed a pervasive remodeling process that promotes the gradual acquisition of distinct molecular signatures, of increasingly homogeneous phenotypes, and of diversified functionalities that combine to confer a CD8+ TM–autonomous capacity for enhanced recall responses and immune protection. Notably, the process of CD8+ TM aging is characterized by a progressive harmonization of memory and naive T cell traits, is broadly amenable to experimental acceleration or retardation, and serves as a constitutional component for the “rebound model” of memory T cell maturation. By casting CD8+ TM populations within the temporal framework of their slowly evolving properties, this model establishes a simple ontogenetic perspective on the principal organization of CD8+ T cell memory that may directly inform the development of improved diagnostic, prophylactic, and therapeutic modalities.

Authors

Jens Eberlein, Bennett Davenport, Tom Nguyen, Francisco Victorino, Kelsey Haist, Kevin Jhun, Anis Karimpour-Fard, Lawrence Hunter, Ross Kedl, Eric T. Clambey, Dirk Homann

×

NLRC4 suppresses melanoma tumor progression independently of inflammasome activation
Ann M. Janowski, … , Suzanne L. Cassel, Fayyaz S. Sutterwala
Ann M. Janowski, … , Suzanne L. Cassel, Fayyaz S. Sutterwala
Published September 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86953.
View: Text | PDF

NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

  • Text
  • PDF
Abstract

Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner.

Authors

Ann M. Janowski, Oscar R. Colegio, Emma E. Hornick, Jennifer M. McNiff, Matthew D. Martin, Vladimir P. Badovinac, Lyse A. Norian, Weizhou Zhang, Suzanne L. Cassel, Fayyaz S. Sutterwala

×

ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells
Chandra Sekhar Boddupalli, … , Susan M. Kaech, Madhav V. Dhodapkar
Chandra Sekhar Boddupalli, … , Susan M. Kaech, Madhav V. Dhodapkar
Published September 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85329.
View: Text | PDF

ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells

  • Text
  • PDF
Abstract

Immune surveillance in tissues is mediated by a long-lived subset of tissue-resident memory T cells (Trm cells). A putative subset of tissue-resident long-lived stem cells is characterized by the ability to efflux Hoechst dyes and is referred to as side population (SP) cells. Here, we have characterized a subset of SP T cells (Tsp cells) that exhibit a quiescent (G0) phenotype in humans and mice. Human Trm cells in the gut and BM were enriched in Tsp cells that were predominantly in the G0 stage of the cell cycle. Moreover, in histone 2B-GFP mice, the 2B-GFP label was retained in Tsp cells, indicative of a slow-cycling phenotype. Human Tsp cells displayed a distinct gene-expression profile that was enriched for genes overexpressed in Trm cells. In mice, proteins encoded by Tsp signature genes, including nuclear receptor subfamily 4 group A member 1 (NR4A1) and ATP-binding cassette (ABC) transporters, influenced the function and differentiation of Trm cells. Responses to adoptive transfer of human Tsp cells into immune-deficient mice and plerixafor therapy suggested that human Tsp cell mobilization could be manipulated as a potential cellular therapy. These data identify a distinct subset of human T cells with a quiescent/slow-cycling phenotype, propensity for tissue enrichment, and potential to mobilize into circulation, which may be harnessed for adoptive cellular therapy.

Authors

Chandra Sekhar Boddupalli, Shiny Nair, Simon M. Gray, Heba N. Nowyhed, Rakesh Verma, Joanna A. Gibson, Clara Abraham, Deepak Narayan, Juan Vasquez, Catherine C. Hedrick, Richard A. Flavell, Kavita M. Dhodapkar, Susan M. Kaech, Madhav V. Dhodapkar

×
  • ← Previous
  • 1
  • 2
  • …
  • 84
  • 85
  • 86
  • …
  • 140
  • 141
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts