Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,384 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 138
  • 139
  • Next →
Early CD4+ T-cell proliferative burst and chronic T-cell engagement impact myeloma outcomes following T-cell engager therapy
Alyssa M. Duffy, … , Madhav V. Dhodapkar, Kavita M. Dhodapkar
Alyssa M. Duffy, … , Madhav V. Dhodapkar, Kavita M. Dhodapkar
Published July 31, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192927.
View: Text | PDF

Early CD4+ T-cell proliferative burst and chronic T-cell engagement impact myeloma outcomes following T-cell engager therapy

  • Text
  • PDF
Abstract

Authors

Alyssa M. Duffy, Anshika Goenka, Maryam I. Azeem, Azmain Taz, Sayalee V. Potdar, Sara A. Scott, Ellen Marin, Jonathan L. Kaufman, Craig C. Hofmeister, Nisha S. Joseph, Vikas A. Gupta, Sagar Lonial, Ajay K. Nooka, Madhav V. Dhodapkar, Kavita M. Dhodapkar

×

Reduced vaccine-induced germinal center outputs in inflammatory bowel disease patients treated with anti-TNF biologics
Michelle W. Cheung, … , Anne-Claude Gingras, Tania H. Watts
Michelle W. Cheung, … , Anne-Claude Gingras, Tania H. Watts
Published July 29, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192589.
View: Text | PDF

Reduced vaccine-induced germinal center outputs in inflammatory bowel disease patients treated with anti-TNF biologics

  • Text
  • PDF
Abstract

Background: Anti-TNF biologics are widely used to treat patients with immune-mediated inflammatory diseases. In mouse models, the complete absence of TNF impairs germinal center (GC) responses. Less is known about the impact of anti-TNF therapy on specific immune responses in humans. Widespread vaccination against SARS-CoV-2 offered an unprecedented opportunity to investigate the effects of biological therapies on responses to specific immunization. Previous work demonstrated that inflammatory bowel disease (IBD) patients treated with anti-TNF biologics exhibit decreased Spike-specific antibody responses compared to IBD patients treated with anti-IL-12/23 or healthy controls, even after four doses of mRNA vaccine. Methods: Here we analyzed humoral responses to SARS-CoV-2 immunization using single-cell RNA-Sequencing and flow cytometry of Spike-specific memory B cells (MBC), as well as avidity measurements of plasma antibodies from IBD patients treated with anti-TNF or anti-IL-12/23 or from healthy controls. Results: We observed decreased somatic hypermutation in the B cell receptors of Spike-specific MBCs and decreased antigen-specific MBC accumulation following SARS-CoV-2 mRNA vaccination in anti-TNF treated IBD patients, compared to IBD patients treated with anti-IL-12/23 or healthy controls. This decreased somatic hypermutation in Spike-specific MBCs in anti-TNF treated patients correlated with decreased and delayed antibody affinity maturation and reduced neutralization activity. Conclusion: These data provide in vivo evidence that anti-TNF, but not anti-IL-12/23, therapy impairs the quantity and quality of antigen-specific GC outputs in humans. Funding: Juan and Stefania Speck (donation) and by Canadian Institutes of Health Research (CIHR)/COVID-Immunity Task Force (CITF) grants VR-1 172711, VS1-175545, GA2-177716, GA1-177703 and CIHR FDN 143301 &143350.

Authors

Michelle W. Cheung, Samantha Xu, Janna R. Shapiro, Freda Qi, Melanie Delgado-Brand, Karen Colwill, Roya Dayam, Ying Liu, Jenny Choi, Joanne M. Stempak, James M. Rini, Vinod Chandran, Mark S. Silverberg, Anne-Claude Gingras, Tania H. Watts

×

CD300a immunoreceptor regulates ischemic tissue damage and adverse remodeling in the mouse heart and kidney
Nanako Nishiyama, … , Kazuko Shibuya, Akira Shibuya
Nanako Nishiyama, … , Kazuko Shibuya, Akira Shibuya
Published July 24, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI184984.
View: Text | PDF

CD300a immunoreceptor regulates ischemic tissue damage and adverse remodeling in the mouse heart and kidney

  • Text
  • PDF
Abstract

Acute ischemic organ diseases such as acute myocardial infarction and acute kidney injury often result in irreversible tissue damage and progress to chronic heart failure (CHF) and chronic kidney disease (CKD), respectively. However, the molecular mechanisms underlying the development of CHF and CKD remain incompletely understood. Here, we show that mice deficient in CD300a, an inhibitory immunoreceptor expressed on myeloid cells, showed enhanced efferocytosis by tissue-resident macrophages and decreased damage-associated molecular patterns and pathogenic SiglecFhi neutrophils, resulting in milder inflammation-associated tissue injury than wild-type mice after ischemia and reperfusion (IR). Notably, we uncovered that CD300a-deficiency on SiglecFlo neutrophils increased the signal transducer and activator of transcription 3-mediated production of pro-angiogenic and anti-fibrotic factors, resulting in milder adverse remodeling after IR. Our results demonstrated that CD300a plays an important role in the pathogenesis of ischemic tissue injury and adverse remodeling in the heart and kidney.

Authors

Nanako Nishiyama, Hitoshi Koizumi, Chigusa Nakahashi-Oda, Satoshi Fujiyama, Xuewei Ng, Hanbin Lee, Fumie Abe, Jinao Li, Yan Xu, Takehito Sugasawa, Kazuko Tajiri, Taketaro Sadahiro, Masaki Ieda, Keiji Tabuchi, Kazuko Shibuya, Akira Shibuya

×

Pulmonary fibroblast-derived stem cell factor promotes neutrophilic asthma by augmenting IL-17A production from ILC3s
Jheng-Syuan Shao, … , Yao-Ming Chang, Ya-Jen Chang
Jheng-Syuan Shao, … , Yao-Ming Chang, Ya-Jen Chang
Published July 17, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187372.
View: Text | PDF

Pulmonary fibroblast-derived stem cell factor promotes neutrophilic asthma by augmenting IL-17A production from ILC3s

  • Text
  • PDF
Abstract

Group 3 innate lymphoid cells (ILC3s) have emerged as an important player in the pathogenesis of neutrophilic asthma. However, the regulatory mechanism supporting ILC3 responses in lung remains largely unclear. Here, we demonstrated that stem cell factor (SCF) expression is significantly increased and positively correlated with IL-17A and MPO expression in asthmatic patients. Notably, we identified ILC3 as a major IL-17A-producing responder to SCF in lung. In mice, SCF synergized with IL-1β/IL-23 to enhance pulmonary ILC3 activation and neutrophilic inflammation. Mechanistically, SCF promoted ILC3 proliferation and cytokine production. Transcriptomic analysis revealed that SCF treatment upregulated the genes related to proliferation and Th17 differentiation, associated with increased AKT and STAT3 signaling. In contrast, deficiency of SCF receptor, c-Kit, reduced ILC3 proliferation and IL-17A production, resulting in the amelioration of airway hyperreactivity (AHR) and neutrophilic inflammation in mouse neutrophilic asthma model. Furthermore, genetic deletion of SCF in fibroblasts revealed fibroblasts as the primary source of SCF for ILC3 activation in lung. Moreover, administration of imatinib, a c-Kit inhibitor, alleviated LPS, air pollution or ovalbumin/LPS-induced AHR and neutrophilic inflammation. Our findings elucidated a positive modulatory role of SCF/c-Kit signaling in ILC3 responses during neutrophilic inflammation, offering a potential therapeutic target for neutrophilic asthma.

Authors

Jheng-Syuan Shao, Alan C. Lai, Wei-Chang Huang, Ko-Chien Wu, Po-Yu Chi, Yao-Ming Chang, Ya-Jen Chang

×

Aggressive B-cell lymphomas retain ATR-dependent determinants of T-cell exclusion from the Germinal Center Dark Zone
Valeria Cancila, … , Anand D. Jeyasekharan, Claudio Tripodo
Valeria Cancila, … , Anand D. Jeyasekharan, Claudio Tripodo
Published July 17, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187371.
View: Text | PDF

Aggressive B-cell lymphomas retain ATR-dependent determinants of T-cell exclusion from the Germinal Center Dark Zone

  • Text
  • PDF
Abstract

The germinal center (GC) dark zone (DZ) and light zone (LZ) represent distinct anatomical regions in lymphoid tissue where B-cell proliferation, immunoglobulin diversification, and selection are coordinated. Diffuse Large B-cell Lymphomas (DLBCL) with DZ-like gene expression profiles exhibit poor outcomes, though reasons are unclear and are not directly related to proliferation. Physiological DZs exhibit an exclusion of T-cells, prompting exploration for whether T-cell paucity contributes to DZ-like DLBCL. We used spatial transcriptomic approaches to achieve higher resolution of T-cell spatial heterogeneity in the GC and to derive potential pathways that underlie T-cell exclusion. We showed that T-cell exclusion from the DZ was linked to DNA damage response (DDR) and chromatin compaction molecular features characterizing the spatial DZ signature, and that these programs were independent of AID deaminase activity. As ATR is a key regulator of DDR, we tested its role in the T-cell inhibitory DZ transcriptional imprint. ATR inhibition reversed not only the DZ transcriptional signature but also DZ T-cell exclusion in DZ-like DLBCL in vitro microfluidic models and in in vivo samples of murine lymphoid tissue. These findings highlight that ATR activity underpins a physiological scenario of immune silencing. ATR inhibition may reverse the immune silent state and enhance T-cell based immunotherapy in aggressive lymphomas with GC DZ-like characteristics.

Authors

Valeria Cancila, Giorgio Bertolazzi, Allison S.Y. Chan, Giovanni Medico, Giulia Bastianello, Gaia Morello, Daniel Paysan, Clemence Lai, Liang Hong, Girija Shenoy, Patrick W. Jaynes, Giovanna Schiavoni, Fabrizio Mattei, Silvia Piconese, Maria V. Revuelta, Francesco Noto, Luca Businaro, Adele De Ninno, Ilenia Cammarata, Fabio Pagni, Saradha Venkatachalapathy, Sabina Sangaletti, Arianna Di Napoli, Giada Cicio, Davide Vacca, Silvia Lonardi, Luisa Lorenzi, Andrés J.M. Ferreri, Beatrice Belmonte, Min Liu, Manikandan Lakshmanan, Michelle S.N. Ong, Biyan Zhang, Tingyi See, Kong-Peng Lam, Gabriele Varano, Mario P. Colombo, Silvio Bicciato, Giorgio Inghirami, Leandro Cerchietti, Maurilio Ponzoni, Roberta Zappasodi, Evelyn Metzger, Joseph Beechem, Fabio Facchetti, Marco Foiani, Stefano Casola, Anand D. Jeyasekharan, Claudio Tripodo

×

Integrative mapping of pre-existing influenza immune landscapes predicts vaccine response
Stephanie Hao, … , Thushan I. de Silva, Adriana Tomic
Stephanie Hao, … , Thushan I. de Silva, Adriana Tomic
Published July 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI189300.
View: Text | PDF

Integrative mapping of pre-existing influenza immune landscapes predicts vaccine response

  • Text
  • PDF
Abstract

BACKGROUND. Predicting individual vaccine responses is a substantial public health challenge. We developed immunaut, an open-source, data-driven framework for systems vaccinologists to analyze and predict immunological outcomes across diverse vaccination settings, beyond traditional assessments. METHODS. Using a comprehensive live attenuated influenza vaccine (LAIV) dataset from 244 Gambian children, immunaut integrated pre- and post-vaccination humoral, mucosal, cellular, and transcriptomic data. Through advanced modeling, our framework provided a holistic, systems-level view of LAIV-induced immunity. RESULTS. The analysis identified three distinct immunophenotypic profiles driven by baseline immunity: (1) CD8 T-cell responders with strong pre-existing immunity boosting memory T-cell responses; (2) Mucosal responders with prior influenza A virus immunity developing robust mucosal IgA and subsequent influenza B virus seroconversion; and (3) Systemic, broad influenza A virus responders starting from immune naivety who mounted broad systemic antibody responses. Pathway analysis revealed how pre-existing immune landscapes and baseline features, such as mucosal preparedness and cellular support, quantitatively dictate vaccine outcomes. CONCLUSION. Our findings emphasize the power of integrative, predictive frameworks for advancing precision vaccinology. The immunaut framework is a valuable resource for deciphering vaccine response heterogeneity and can be applied to optimize immunization strategies across diverse populations and vaccine platforms. FUNDING. Wellcome Trust (110058/Z/15/Z); Bill & Melinda Gates Foundation (INV-004222); HIC-Vac consortium; NIAID (R21 AI151917); NIAID CEIRR Network (75N93021C00045).

Authors

Stephanie Hao, Ivan Tomic, Benjamin B. Lindsey, Ya Jankey Jagne, Katja Hoschler, Adam Meijer, Juan Manuel Carreño Quiroz, Philip Meade, Kaori Sano, Chikondi Peno, André G. Costa-Martins, Debby Bogaert, Beate Kampmann, Helder Nakaya, Florian Krammer, Thushan I. de Silva, Adriana Tomic

×

Organ-specific features of human kidney lymphatics are disrupted in chronic transplant rejection
Daniyal J. Jafree, … , Menna R. Clatworthy, David A. Long
Daniyal J. Jafree, … , Menna R. Clatworthy, David A. Long
Published July 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI168962.
View: Text | PDF

Organ-specific features of human kidney lymphatics are disrupted in chronic transplant rejection

  • Text
  • PDF
Abstract

Lymphatic vessels maintain tissue fluid homeostasis and modulate inflammation, yet their spatial organisation and molecular identity in the healthy human kidney, and how these change during chronic transplant rejection, remain poorly defined. Here, we show that lymphatic capillaries initiate adjacent to cortical kidney tubules and lack smooth muscle coverage. These vessels exhibit an organ-specific molecular signature, enriched for CCL14, DNASE1L3, and MDK, with limited expression of canonical immune-trafficking markers found in other organ lymphatics, such as LYVE1 and CXCL8. In allografts with chronic mixed rejection, lymphatics become disorganised and infiltrate the medulla, with their endothelial junctions remodelling from a button-like to a continuous, zipper-like architecture. Lymphatics in rejecting kidneys localise around and interconnect tertiary lymphoid structures at different maturation stages, with altered intra- and peri-lymphatic CD4⁺ T cell distribution. The infiltrating T cells express IFNγ, which upregulates co-inhibitory ligands in lymphatic endothelial cells, including PVR and LGALS9. Simultaneously, lymphatics acquire HLA class II expression and exhibit C4d deposition, consistent with alloantibody binding and complement activation. Together, these findings define the spatial and molecular features of human kidney lymphatics, revealing tolerogenic reprogramming, accompanied by structural perturbations, during chronic transplant rejection.

Authors

Daniyal J. Jafree, Benjamin J Stewart, Karen L. Price, Maria Kolatsi-Joannou, Camille Laroche, Barian Mohidin, Benjamin Davis, Hannah Mitchell, Lauren G. Russell, Lucía Marinas del Rey, Chun Jing Wang, William J. Mason, Byung Il Lee, Lauren Heptinstall, Ayshwarya Subramanian, Gideon Pomeranz, Dale Moulding, Laura Wilson, Tahmina Wickenden, Saif N. Malik, Natalie Holroyd, Claire L. Walsh, Jennifer C. Chandler, Kevin X. Cao, Paul J.D. Winyard, Adrian S. Woolf, Marc Aurel Busche, Simon Walker-Samuel, Lucy S.K. Walker, Tessa Crompton, Peter J. Scambler, Reza Motallebzadeh, Menna R. Clatworthy, David A. Long

×

Age-dependent brain responses to mechanical stress determine resilience in a chronic lymphatic drainage impairment model
Zachary H. Gursky, … , Laura Santambrogio, Helene Benveniste
Zachary H. Gursky, … , Laura Santambrogio, Helene Benveniste
Published July 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI182555.
View: Text | PDF

Age-dependent brain responses to mechanical stress determine resilience in a chronic lymphatic drainage impairment model

  • Text
  • PDF
Abstract

The outflow of 'dirty' brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial peri-venous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation, and up-regulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain’s age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.

Authors

Zachary H. Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste

×

NFAT5 dictates crosstalk between intestinal epithelial regenerative capacity and microbiota in murine colitis models
Se Hyeon Park, … , Donghyun Kim, Wan-Uk Kim
Se Hyeon Park, … , Donghyun Kim, Wan-Uk Kim
Published July 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI183093.
View: Text | PDF

NFAT5 dictates crosstalk between intestinal epithelial regenerative capacity and microbiota in murine colitis models

  • Text
  • PDF
Abstract

Hypertonic and hyperosmolar stimuli frequently pose challenges to the intestinal tract. Therefore, a resilient epithelial barrier is essential for maintaining gut homeostasis in the presence of osmotic perturbations. NFAT5, an osmosensitive transcription factor, primarily maintains cellular homeostasis under hypertonic conditions. However, the osmoprotective role of NFAT5 in enterocyte homeostasis is poorly understood. Here, we demonstrate that NFAT5 is critical for the survival and proliferation of intestinal epithelial cells (IECs) and that its deficiency accelerates chemically induced or spontaneous colitis in mice. Mechanistically, NFAT5 promotes the survival of IECs and the renewal of intestinal stem cells, thereby regulating the production of mucus and antimicrobial compounds, including RegIII and lysozyme, which consequently shape the gut microbial composition to prevent colitis. Transcriptome analysis identifies HSP70 as a key downstream target of NFAT5 in epithelial regeneration. Loss- and gain-of-function experiments of HSP70 revealed that NFAT5 mitigates experimental colitis through IEC Hsp70, which protected stem cells from inflammation-induced injury and maintained barrier function. In conclusion, our study demonstrates a previously unknown role for NFAT5 in dictating the crosstalk between intestinal stem cells and the microbiota, underscoring the importance of the NFAT5–HSP70 axis in maintaining epithelial regeneration related to gut barrier function, balancing microbial composition, and subsequently preventing colitis progression.

Authors

Se Hyeon Park, Dae Hee Cheon, Yu-Mi Kim, Yeji Choi, Yong-Joon Cho, Bong-Ki Hong, Sang-Hyun Cho, Mi‑Na Kweon, Hyug Moo Kwon, Eugene B. Chang, Donghyun Kim, Wan-Uk Kim

×

Treg activation during allograft tolerance induction requires mitochondrial-induced TGFβ1 in type 1 conventional dendritic cells
Samantha L Schroth, … , Maria-Luisa Alegre, Edward B. Thorp
Samantha L Schroth, … , Maria-Luisa Alegre, Edward B. Thorp
Published July 11, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI178960.
View: Text | PDF

Treg activation during allograft tolerance induction requires mitochondrial-induced TGFβ1 in type 1 conventional dendritic cells

  • Text
  • PDF
Abstract

The role of type 1 conventional dendritic cells (cDC1) in tolerance induction to solid organ allografts is unknown and important for strategies that seek to prolong allograft viability. Using a murine model deficient in cDC1s, we report cDC1s are required for donor antigen and costimulation blockade (DST + CoB) tolerance induction and survival of cardiac allografts. cDC1 deficiency led to decreases in CD4+CD25+FoxP3+ T cells within both allograft and spleen tissue of transplant recipients and this was found to be antigen specific. Donor antigen stimulation induced TGF-β1 expression both in vivo cDC1 and in vitro Flt3L derived cDC1. Genetic deletion of Tgfβ1 in cDC1s prevented induction of antigen specific CD4+CD25+FoxP3+ T cells and was associated with cardiac allograft rejection. In parallel, single-cell RNA sequencing and metabolic analysis revealed upregulation of cDC1 mitochondrial metabolic signatures after in vivo exposure to DST + CoB. Genetic inactivation of cDC1 mitochondrial metabolism reduced expression of cDC1 TGF-β1, decreased antigen specific T regulatory cell populations, and impaired allograft tolerance. Taken together, our findings newly implicate cDC1s in strategies to preserve solid organ allografts and also implicate mitochondrial metabolism of cDC1s as a molecular mechanism to enhance the generation of antigen-specific CD4+CD25+FoxP3+ T cells through TGF-β1.

Authors

Samantha L Schroth, Lei Zhang, Rebecca T.L. Jones, Kristofor Glinton, Nikita L. Mani, Hiroyasu Inui, Jesse T. Davidson, Samuel E. Weinberg, Navdeep Chandel, Maria-Luisa Alegre, Edward B. Thorp

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 138
  • 139
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts