Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,398 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 127
  • 128
  • 129
  • …
  • 139
  • 140
  • Next →
Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell–driven B cell responses
Hyung W. Lim, … , Peter Hillsamer, Chang H. Kim
Hyung W. Lim, … , Peter Hillsamer, Chang H. Kim
Published December 1, 2004
Citation Information: J Clin Invest. 2004;114(11):1640-1649. https://doi.org/10.1172/JCI22325.
View: Text | PDF | Erratum

Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell–driven B cell responses

  • Text
  • PDF
Abstract

How Tregs migrate to GCs, and whether they regulate the helper activity of the T cells in GCs (GC-Th cells) remains poorly understood. We found a T cell subset in human tonsils that displays potent suppressive activities toward GC-Th cell–dependent B cell responses. These Tregs with the surface phenotype of CD4+CD25+CD69– migrate well to CCL19, a chemokine expressed in the T cell zone, but poorly to CXCL13, a chemokine expressed in the B cell zone. This migration toward the T cell–rich zone rapidly changes to trafficking toward B cell follicles upon T cell activation. This change in chemotactic behavior upon activation of T cells is consistent with their switch in the expression of the 2 chemokine receptors CXCR5 and CCR7. CD4+CD25+CD69– Tregs suppress GC-Th cells and GC-Th cell–induced B cell responses such as Ig production, survival, and expression of activation-induced cytosine deaminase. Our results have identified a subset of Tregs that is physiologically relevant to GC-Th cell–dependent B cell responses and a potential regulation mechanism for the trafficking of these Tregs to GCs.

Authors

Hyung W. Lim, Peter Hillsamer, Chang H. Kim

×

A role for proteinase-activated receptor–1 in inflammatory bowel diseases
Nathalie Vergnolle, … , Giuseppe Cirino, Stefano Fiorucci
Nathalie Vergnolle, … , Giuseppe Cirino, Stefano Fiorucci
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1444-1456. https://doi.org/10.1172/JCI21689.
View: Text | PDF | Retraction

A role for proteinase-activated receptor–1 in inflammatory bowel diseases

  • Text
  • PDF
Abstract

Proteinase-activated receptor–1 (PAR1), a G protein–coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized that PAR1 activation in the colon is involved in the pathogenesis of IBD. Here, we demonstrate that PAR1 is overexpressed in the colon of IBD patients. In mice, intracolonic administration of PAR1 agonists led to an inflammatory reaction characterized by edema and granulocyte infiltration. This PAR1 activation–induced inflammation was dependent on B and T lymphocytes. Moreover, PAR1 activation exacerbated and prolonged inflammation in a mouse model of IBD induced by the intracolonic administration of trinitrobenzene sulfonic acid (TNBS), while PAR1 antagonism significantly decreased the mortality and severity of colonic inflammation induced by TNBS and dextran sodium sulfate. In these 2 models, colitis development was strongly attenuated by PAR1 deficiency. Taken together, these results imply an important role for PAR1 in the pathogenesis of experimental colitis, supporting the notion that PAR1 inhibition may be beneficial in the context of IBD and possibly in other chronic intestinal inflammatory disorders.

Authors

Nathalie Vergnolle, Laurie Cellars, Andrea Mencarelli, Giovanni Rizzo, Sunita Swaminathan, Paul Beck, Martin Steinhoff, Patricia Andrade-Gordon, Nigel W. Bunnett, Morley D. Hollenberg, John L. Wallace, Giuseppe Cirino, Stefano Fiorucci

×

Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Geneviève de Saint Basile, … , Alain Fischer, Françoise Le Deist
Published November 15, 2004
Citation Information: J Clin Invest. 2004;114(10):1512-1517. https://doi.org/10.1172/JCI22588.
View: Text | PDF

Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3

  • Text
  • PDF
Abstract

We investigated the molecular mechanism underlying a severe combined immunodeficiency characterized by the selective and complete absence of T cells. The condition was found in 5 patients and 2 fetuses from 3 consanguineous families. Linkage analysis performed on the 3 families revealed that the patients were carrying homozygous haplotypes within the 11q23 region, in which the genes encoding the γ, δ, and ε subunits of CD3 are located. Patients and affected fetuses from 2 families were homozygous for a mutation in the CD3D gene, and patients from the third family were homozygous for a mutation in the CD3E gene. The thymus from a CD3δ-deficient fetus was analyzed and revealed that T cell differentiation was blocked at entry into the double positive (CD4+CD8+) stage with the accumulation of intermediate CD4–single positive cells. This indicates that CD3δ plays an essential role in promoting progression of early thymocytes toward double-positive stage. Altogether, these findings extend the known molecular mechanisms underlying severe combined immunodeficiency to a new deficiency, i.e., CD3ε deficiency, and emphasize the essential roles played by the CD3ε and CD3δ subunits in human thymocyte development, since these subunits associate with both the pre-TCR and the TCR.

Authors

Geneviève de Saint Basile, Frédéric Geissmann, Elisabeth Flori, Béatrice Uring-Lambert, Claire Soudais, Marina Cavazzana-Calvo, Anne Durandy, Nada Jabado, Alain Fischer, Françoise Le Deist

×

A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA–induced IL-12 production and Th cell differentiation
Kenji Sugimoto, … , Yasuhiro Shimada, Tetsuya Matsuguchi
Kenji Sugimoto, … , Yasuhiro Shimada, Tetsuya Matsuguchi
Published September 15, 2004
Citation Information: J Clin Invest. 2004;114(6):857-866. https://doi.org/10.1172/JCI20014.
View: Text | PDF

A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA–induced IL-12 production and Th cell differentiation

  • Text
  • PDF
Abstract

A serine/threonine protein kinase, Cot/Tpl2, is indispensable for extracellular signal–regulated kinase (ERK) activation and production of TNF-α and PGE2 in LPS-stimulated macrophages. We show here that Cot/Tpl2 is also activated by other Toll-like receptor (TLR) ligands. Bacterial DNA rich in the dinucleotide CG (CpG-DNA), unlike LPS or synthetic lipopeptide, activated ERK in a Cot/Tpl2–independent manner. Peritoneal macrophages and bone marrow–derived DCs from Cot/Tpl2–/– mice produced significantly more IL-12 in response to CpG-DNA than those from WT mice. Enhanced IL-12 production in Cot/Tpl2–/– macrophages is, at least partly, regulated at the transcriptional level, and the elevated IL-12 mRNA level in Cot/Tpl2–/– macrophages is accompanied by decreased amounts of IL-12 repressors, such as c-musculoaponeurotic fibrosarcoma (c-Maf) and GATA sequence in the IL-12 promoter–binding protein (GA-12–binding protein; GAP-12) in the nucleus. Consistently, Cot/Tpl2–/– mice showed Th1-skewed antigen-specific immune responses upon OVA immunization and Leishmania major infection in vivo. These results indicate that Cot/Tpl2 is an important negative regulator of Th1-type adaptive immunity, that it achieves this regulation by inhibiting IL-12 production from accessory cells, and that it might be a potential target molecule in CpG-DNA–guided vaccination.

Authors

Kenji Sugimoto, Mutsuhiro Ohata, Jun Miyoshi, Hiroyoshi Ishizaki, Naotake Tsuboi, Akio Masuda, Yasunobu Yoshikai, Masaya Takamoto, Kazuo Sugane, Seiichi Matsuo, Yasuhiro Shimada, Tetsuya Matsuguchi

×

The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity
David G. Bowen, … , Geoffrey W. McCaughan, Patrick Bertolino
David G. Bowen, … , Geoffrey W. McCaughan, Patrick Bertolino
Published September 1, 2004
Citation Information: J Clin Invest. 2004;114(5):701-712. https://doi.org/10.1172/JCI21593.
View: Text | PDF

The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity

  • Text
  • PDF
Abstract

Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

Authors

David G. Bowen, Monica Zen, Lauren Holz, Thomas Davis, Geoffrey W. McCaughan, Patrick Bertolino

×

Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance
Zhiya Yu, … , Brian M. Baker, Nicholas P. Restifo
Zhiya Yu, … , Brian M. Baker, Nicholas P. Restifo
Published August 16, 2004
Citation Information: J Clin Invest. 2004;114(4):551-559. https://doi.org/10.1172/JCI21695.
View: Text | PDF

Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance

  • Text
  • PDF
Abstract

Understanding the mechanisms underlying the poor immunogenicity of human self/tumor antigens is challenging because of experimental limitations in humans. Here, we developed a human-mouse chimeric model that allows us to investigate the roles of the frequency and self-reactivity of antigen-specific T cells in determination of the immunogenicity of an epitope (amino acids 209–217) derived from a human melanoma antigen, gp100. In these transgenic mice, CD8+ T cells express the variable regions of a human T cell receptor (hTCR) specific for an HLA-A*0201–restricted gp100209–217. Immunization of hTCR-transgenic mice with gp100209–217 peptide elicited minimal T cell responses, even in mice in which the epitope was knocked out. Conversely, a modified epitope, gp100209–217(2M), was significantly more immunogenic. Both biological and physical assays revealed a fast rate of dissociation of the native peptide from the HLA-A*0201 molecule and a considerably slower rate of dissociation of the modified peptide. In vivo, the time allowed for dissociation of peptide-MHC complexes on APCs prior to their exposure to T cells significantly affected the induction of immune responses. These findings indicate that the poor immunogenicity of some self/tumor antigens is due to the instability of the peptide-MHC complex rather than to the continual deletion or tolerization of self-reactive T cells.

Authors

Zhiya Yu, Marc R. Theoret, Christopher E. Touloukian, Deborah R. Surman, Scott C. Garman, Lionel Feigenbaum, Tiffany K. Baxter, Brian M. Baker, Nicholas P. Restifo

×

The anaphylatoxin C3a downregulates the Th2 response to epicutaneously introduced antigen
Seiji Kawamoto, … , Craig Gerard, Raif S. Geha
Seiji Kawamoto, … , Craig Gerard, Raif S. Geha
Published August 1, 2004
Citation Information: J Clin Invest. 2004;114(3):399-407. https://doi.org/10.1172/JCI19082.
View: Text | PDF

The anaphylatoxin C3a downregulates the Th2 response to epicutaneously introduced antigen

  • Text
  • PDF
Abstract

Mechanical injury to the skin results in activation of the complement component C3 and release of the anaphylatoxin C3a. C3a binds to a seven-transmembrane G protein–coupled receptor, C3aR. We used C3aR–/– mice to examine the role of C3a in a mouse model of allergic inflammation induced by epicutaneous sensitization with OVA. C3aR–/– mice exhibited an exaggerated Th2 response to epicutaneous but not to intraperitoneal sensitization with OVA, as evidenced by significantly elevated levels of serum OVA-specific IgG1 and significantly increased secretion of the Th2 cytokines IL-4, IL-5, and IL-10 by antigen-stimulated splenocytes. Presentation of OVA peptide by C3aR–/– APCs caused significantly more IL-4 and IL-5 secretion by T cells from OVA–T cell receptor (OVA-TCR) transgenic mice compared with presentation by WT APCs. C3a inhibited the ability of splenocytes, but not of highly purified T cells, to secrete Th2 cytokines in response to TCR ligation. This inhibition was mediated by IL-12 secreted by APCs in response to C3a. These results suggest that C3a-C3aR interactions inhibit the ability of APCs to drive Th2 cell differentiation in response to epicutaneously introduced antigen and may have important implications for allergic skin diseases.

Authors

Seiji Kawamoto, Ali Yalcindag, Dhafer Laouini, Scott Brodeur, Paul Bryce, Bao Lu, Alison A. Humbles, Hans Oettgen, Craig Gerard, Raif S. Geha

×

Apolipoprotein A-IV inhibits experimental colitis
Thorsten Vowinkel, … , D. Neil Granger, Theodore J. Kalogeris
Thorsten Vowinkel, … , D. Neil Granger, Theodore J. Kalogeris
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):260-269. https://doi.org/10.1172/JCI21233.
View: Text | PDF

Apolipoprotein A-IV inhibits experimental colitis

  • Text
  • PDF
Abstract

The antiatherogenic properties of apoA-IV suggest that this protein may act as an anti-inflammatory agent. We examined this possibility in a mouse model of acute colitis. Mice consumed 3% dextran sulfate sodium (DSS) in their drinking water for 7 days, with or without daily intraperitoneal injections of recombinant human apoA-IV. apoA-IV significantly and specifically delayed the onset, and reduced the severity and extent of, DSS-induced inflammation, as assessed by clinical disease activity score, macroscopic appearance and histology of the colon, and tissue myeloperoxidase activity. Intravital fluorescence microscopy of colonic microvasculature revealed that apoA-IV significantly inhibited DSS-induced leukocyte and platelet adhesive interactions. Furthermore, apoA-IV dramatically reduced the upregulation of P-selectin on colonic endothelium during DSS-colitis. apoA-IV knockout mice exhibited a significantly greater inflammatory response to DSS than did their WT littermates; this greater susceptibility to DSS-induced inflammation was reversed upon exogenous administration of apoA-IV to knockout mice. These results provide the first direct support for the hypothesis that apoA-IV is an endogenous anti-inflammatory protein. This anti-inflammatory effect likely involves the inhibition of P-selectin–mediated leukocyte and platelet adhesive interactions.

Authors

Thorsten Vowinkel, Mikiji Mori, Christian F. Krieglstein, Janice Russell, Fumito Saijo, Sulaiman Bharwani, Richard H. Turnage, W. Sean Davidson, Patrick Tso, D. Neil Granger, Theodore J. Kalogeris

×

Inhibition of experimental asthma by indoleamine 2,3-dioxygenase
Tomoko Hayashi, … , Dennis A. Carson, Eyal Raz
Tomoko Hayashi, … , Dennis A. Carson, Eyal Raz
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):270-279. https://doi.org/10.1172/JCI21275.
View: Text | PDF

Inhibition of experimental asthma by indoleamine 2,3-dioxygenase

  • Text
  • PDF
Abstract

Epidemiological evidence points to the inverse relationship between microbial exposure and the prevalence of allergic asthma and autoimmune diseases in Westernized countries. The molecular basis for this observation has not yet been completely delineated. Here we report that the administration of certain toll-like receptor (TLR) ligands, via the activation of innate immunity, induces high levels of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of tryptophan catabolism in various organs. TLR9 ligand–induced pulmonary IDO activity inhibits Th2-driven experimental asthma. IDO activity expressed by resident lung cells rather than by pulmonary DCs suppressed lung inflammation and airway hyperreactivity. Our results provide a mechanistic insight into the various formulations of the hygiene hypothesis and underscore the notion that activation of innate immunity can inhibit adaptive Th cell responses.

Authors

Tomoko Hayashi, Lucinda Beck, Cyprian Rossetto, Xing Gong, Osamu Takikawa, Kenji Takabayashi, David H. Broide, Dennis A. Carson, Eyal Raz

×

Regulation of pulmonary fibrosis by chemokine receptor CXCR3
Dianhua Jiang, … , Craig Gerard, Paul W. Noble
Dianhua Jiang, … , Craig Gerard, Paul W. Noble
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):291-299. https://doi.org/10.1172/JCI16861.
View: Text | PDF

Regulation of pulmonary fibrosis by chemokine receptor CXCR3

  • Text
  • PDF
Abstract

CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-γ–inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-γ production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-γ by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-γ or restoration of endogenous IFN-γ production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-γ–neutralizing Ab’s enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-γ following lung injury.

Authors

Dianhua Jiang, Jiurong Liang, Jennifer Hodge, Bao Lu, Zhou Zhu, Shuang Yu, Juan Fan, Yunfei Gao, Zhinan Yin, Robert Homer, Craig Gerard, Paul W. Noble

×
  • ← Previous
  • 1
  • 2
  • …
  • 127
  • 128
  • 129
  • …
  • 139
  • 140
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts