Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Genetics

  • 450 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • …
  • 44
  • 45
  • Next →
Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model
Erez M. Bublil, … , Viktor Kožich, Jan P. Kraus
Erez M. Bublil, … , Viktor Kožich, Jan P. Kraus
Published May 16, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85396.
View: Text | PDF

Enzyme replacement with PEGylated cystathionine β-synthase ameliorates homocystinuria in murine model

  • Text
  • PDF
Abstract

Homocystinuria, which typically results from cystathionine β-synthase (CBS) deficiency, is the most common defect of sulfur amino acid metabolism. CBS condenses homocysteine and serine to cystathionine that is then converted to cysteine. Individuals with homocystinuria have markedly elevated plasma levels of homocysteine and methionine and reduced concentrations of cystathionine and cysteine. Clinical disease manifestations include thromboembolism and neuropsychiatric, ocular, and skeletal complications. Here, we have shown that administration of PEGylated CBS into the circulation of homocystinuria model mice alters the extra- and intracellular equilibrium of sulfur amino acids, resulting in a decrease of approximately 75% in plasma total homocysteine (tHcy) and normalization of cysteine concentrations. Moreover, the decrease in homocysteine and the normalization of cysteine in PEGylated CBS–treated model mice were accompanied by improvement of histopathological liver symptoms and increased survival. Together, these data suggest that CBS enzyme replacement therapy (ERT) is a promising approach for the treatment of homocystinuria and that ERT for metabolic diseases may not necessitate introduction of the deficient enzyme into its natural intracellular compartment.

Authors

Erez M. Bublil, Tomas Majtan, Insun Park, Richard S. Carrillo, Helena Hůlková, Jakub Krijt, Viktor Kožich, Jan P. Kraus

×

Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis
Erik Schoenmakers, … , Dolph Hatfield, Krishna Chatterjee
Erik Schoenmakers, … , Dolph Hatfield, Krishna Chatterjee
Published February 8, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84747.
View: Text | PDF

Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis

  • Text
  • PDF
Abstract

Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome–encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2′-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis.

Authors

Erik Schoenmakers, Bradley Carlson, Maura Agostini, Carla Moran, Odelia Rajanayagam, Elena Bochukova, Ryuta Tobe, Rachel Peat, Evelien Gevers, Francesco Muntoni, Pascale Guicheney, Nadia Schoenmakers, Sadaf Farooqi, Greta Lyons, Dolph Hatfield, Krishna Chatterjee

×

Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs
Sakie Ohmura, … , Satoru Takahashi, James Douglas Engel
Sakie Ohmura, … , Satoru Takahashi, James Douglas Engel
Published January 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83894.
View: Text | PDF

Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs

  • Text
  • PDF
Abstract

The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell–specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte–specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte–specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell–regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell–specific transcriptional activity.

Authors

Sakie Ohmura, Seiya Mizuno, Hisashi Oishi, Chia-Jui Ku, Mary Hermann, Tomonori Hosoya, Satoru Takahashi, James Douglas Engel

×

Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin
Yavuz Bayram, … , Beyhan Tuysuz, James R. Lupski
Yavuz Bayram, … , Beyhan Tuysuz, James R. Lupski
Published January 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84457.
View: Text | PDF

Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin

  • Text
  • PDF
Abstract

BACKGROUND. Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases.

METHODS. We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families.

RESULTS. Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme–like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression.

CONCLUSION. In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis.

FUNDING. This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.

Authors

Yavuz Bayram, Ender Karaca, Zeynep Coban Akdemir, Elif Ozdamar Yilmaz, Gulsen Akay Tayfun, Hatip Aydin, Deniz Torun, Sevcan Tug Bozdogan, Alper Gezdirici, Sedat Isikay, Mehmed M. Atik, Tomasz Gambin, Tamar Harel, Ayman W. El-Hattab, Wu-Lin Charng, Davut Pehlivan, Shalini N. Jhangiani, Donna M. Muzny, Ali Karaman, Tamer Celik, Ozge Ozalp Yuregir, Timur Yildirim, Ilhan A. Bayhan, Eric Boerwinkle, Richard A. Gibbs, Nursel Elcioglu, Beyhan Tuysuz, James R. Lupski

×

Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma
Matthew L. Hedberg, … , Richard P. Lifton, Jennifer R. Grandis
Matthew L. Hedberg, … , Richard P. Lifton, Jennifer R. Grandis
Published November 30, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI82066.
View: Text | PDF | Corrigendum

Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma

  • Text
  • PDF
Abstract

BACKGROUND. Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC.

METHODS. Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation.

RESULTS. Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2.

CONCLUSION. In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches.

FUNDING. National Cancer Institute, American Cancer Society, Agency for Science, Technology and Research of Singapore, and Gilead Sciences Inc.

Authors

Matthew L. Hedberg, Gerald Goh, Simion I. Chiosea, Julie E. Bauman, Maria L. Freilino, Yan Zeng, Lin Wang, Brenda B. Diergaarde, William E. Gooding, Vivian W.Y. Lui, Roy S. Herbst, Richard P. Lifton, Jennifer R. Grandis

×

Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer
Beatrice Rondinelli, … , Davide Cittaro, Giovanni Tonon
Beatrice Rondinelli, … , Davide Cittaro, Giovanni Tonon
Published November 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI81040.
View: Text | PDF | Corrigendum

Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer

  • Text
  • PDF
Abstract

Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.

Authors

Beatrice Rondinelli, Dalia Rosano, Elena Antonini, Michela Frenquelli, Laura Montanini, DaChuan Huang, Simona Segalla, Kosuke Yoshihara, Samir B. Amin, Dejan Lazarevic, Bin Tean The, Roel G.W. Verhaak, P. Andrew Futreal, Luciano Di Croce, Lynda Chin, Davide Cittaro, Giovanni Tonon

×

A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis
Ariella Weinberg-Shukron, … , Offer Gerlitz, David Zangen
Ariella Weinberg-Shukron, … , Offer Gerlitz, David Zangen
Published October 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI83553.
View: Text | PDF

A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis

  • Text
  • PDF
Abstract

Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.

Authors

Ariella Weinberg-Shukron, Paul Renbaum, Rachel Kalifa, Sharon Zeligson, Ziva Ben-Neriah, Amatzia Dreifuss, Amal Abu-Rayyan, Noa Maatuk, Nilly Fardian, Dina Rekler, Moien Kanaan, Abraham O. Samson, Ephrat Levy-Lahad, Offer Gerlitz, David Zangen

×

Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping
Quan Q. Gao, … , Matthew Wolf, Elizabeth M. McNally
Quan Q. Gao, … , Matthew Wolf, Elizabeth M. McNally
Published October 12, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI82768.
View: Text | PDF

Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping

  • Text
  • PDF
Abstract

Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.

Authors

Quan Q. Gao, Eugene Wyatt, Jeff A. Goldstein, Peter LoPresti, Lisa M. Castillo, Alec Gazda, Natalie Petrossian, Judy U. Earley, Michele Hadhazy, David Y. Barefield, Alexis R. Demonbreun, Carsten Bönnemann, Matthew Wolf, Elizabeth M. McNally

×

Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations
David A. Zeevi, … , Arndt Rolfs, Ari Zimran
David A. Zeevi, … , Arndt Rolfs, Ari Zimran
Published August 31, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79322.
View: Text | PDF

Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations

  • Text
  • PDF
Abstract

BACKGROUND. Noninvasive prenatal testing can be used to accurately detect chromosomal aneuploidies in circulating fetal DNA; however, the necessity of parental haplotype construction is a primary drawback to noninvasive prenatal diagnosis (NIPD) of monogenic disease. Family-specific haplotype assembly is essential for accurate diagnosis of minuscule amounts of circulating cell-free fetal DNA; however, current haplotyping techniques are too time-consuming and laborious to be carried out within the limited time constraints of prenatal testing, hampering practical application of NIPD in the clinic. Here, we have addressed this pitfall and devised a universal strategy for rapid NIPD of a prevalent mutation in the Ashkenazi Jewish (AJ) population.

METHODS. Pregnant AJ couples, carrying mutation(s) in GBA, which encodes acid β-glucosidase, were recruited at the SZMC Gaucher Clinic. Targeted next-generation sequencing of GBA-flanking SNPs was performed on peripheral blood samples from each couple, relevant mutation carrier family members, and unrelated individuals who are homozygotes for an AJ founder mutation. Allele-specific haplotypes were constructed based on linkage, and a consensus Gaucher disease–associated founder mutation–flanking haplotype was fine mapped. Together, these haplotypes were used for NIPD. All test results were validated by conventional prenatal or postnatal diagnostic methods.

RESULTS. Ten parental alleles in eight unrelated fetuses were diagnosed successfully based on the noninvasive method developed in this study. The consensus mutation–flanking haplotype aided diagnosis for 6 of 9 founder mutation alleles.

CONCLUSIONS. The founder NIPD method developed and described here is rapid, economical, and readily adaptable for prenatal testing of prevalent autosomal recessive disease-causing mutations in an assortment of worldwide populations.

FUNDING. SZMC, Protalix Biotherapeutics Inc., and Centogene AG.

Authors

David A. Zeevi, Gheona Altarescu, Ariella Weinberg-Shukron, Fouad Zahdeh, Tama Dinur, Gaya Chicco, Yair Herskovitz, Paul Renbaum, Deborah Elstein, Ephrat Levy-Lahad, Arndt Rolfs, Ari Zimran

×

RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome
Nina Bögershausen, … , Nicholas Katsanis, Bernd Wollnik
Nina Bögershausen, … , Nicholas Katsanis, Bernd Wollnik
Published August 17, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80102.
View: Text | PDF

RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome

  • Text
  • PDF
Abstract

The genetic disorder Kabuki syndrome (KS) is characterized by developmental delay and congenital anomalies. Dominant mutations in the chromatin regulators lysine (K)–specific methyltransferase 2D (KMT2D) (also known as MLL2) and lysine (K)–specific demethylase 6A (KDM6A) underlie the majority of cases. Although the functions of these chromatin-modifying proteins have been studied extensively, the physiological systems regulated by them are largely unknown. Using whole-exome sequencing, we identified a mutation in RAP1A that was converted to homozygosity as the result of uniparental isodisomy (UPD) in a patient with KS and a de novo, dominant mutation in RAP1B in a second individual with a KS-like phenotype. We elucidated a genetic and functional interaction between the respective KS-associated genes and their products in zebrafish models and patient cell lines. Specifically, we determined that dysfunction of known KS genes and the genes identified in this study results in aberrant MEK/ERK signaling as well as disruption of F-actin polymerization and cell intercalation. Moreover, these phenotypes could be rescued in zebrafish models by rebalancing MEK/ERK signaling via administration of small molecule inhibitors of MEK. Taken together, our studies suggest that the KS pathophysiology overlaps with the RASopathies and provide a potential direction for treatment design.

Authors

Nina Bögershausen, I-Chun Tsai, Esther Pohl, Pelin Özlem Simsek Kiper, Filippo Beleggia, E. Ferda Percin, Katharina Keupp, Angela Matchan, Esther Milz, Yasemin Alanay, Hülya Kayserili, Yicheng Liu, Siddharth Banka, Andrea Kranz, Martin Zenker, Dagmar Wieczorek, Nursel Elcioglu, Paolo Prontera, Stanislas Lyonnet, Thomas Meitinger, A. Francis Stewart, Dian Donnai, Tim M. Strom, Koray Boduroglu, Gökhan Yigit, Yun Li, Nicholas Katsanis, Bernd Wollnik

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • …
  • 44
  • 45
  • Next →
A hop, exon skip, and a jump for muscular dystrophy
Quan Gao and colleagues developed an exon skipping strategy that generates a truncated, functional γ-sarcoglycan protein and improves defects in muscular dystrophy models…
Published October 12, 2015
Scientific Show StopperGenetics

A curve in the spine
Shunmoogum Patten and colleagues identify variants of POC5 that are associated with idiopathic scoliosis…
Published February 2, 2015
Scientific Show StopperGenetics
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts