Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Genetics

  • 466 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • …
  • 46
  • 47
  • Next →
Mutations in sphingosine-1-phosphase lyase cause nephrosis with ichthyosis and adrenal insufficiency
Svjetlana Lovric, et al.
Svjetlana Lovric, et al.
View: Text | PDF

Mutations in sphingosine-1-phosphase lyase cause nephrosis with ichthyosis and adrenal insufficiency

  • Text
  • PDF
Abstract

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.

Authors

Svjetlana Lovric, Sara Goncalves, Heon Yung Gee, Babak Oskouian, Honnappa Srinivas, Won-Il Choi, Shirlee Shril, Shazia Ashraf, Weizhen Tan, Jia Rao, Merlin Airik, David Schapiro, Daniela A. Braun, Carolin E. Sadowski, Eugen Widmeier, Tilman Jobst-Schwan, Johanna Magdalena Schmidt, Vladimir Girik, Guido Capitani, Jung H. Suh, Noëlle Lachaussée, Christelle Arrondel, Julie Patat, Olivier Gribouval, Monica Furlano, Olivia Boyer, Alain Schmitt, Vincent Vuiblet, Seema Hashmi, Rainer Wilcken, Francois P. Bernier, A. Micheil Innes, Jillian S. Parboosingh, Ryan E. Lamont, Julian P. Midgley, Nicola Wright, Jacek Majewski, Martin Zenker, Franz Schaefer, Navina Kuss, Johann Greil, Thomas Giese, Klaus Schwarz, Vilain Catheline, Denny Schanze, Ingolf Franke, Yves Sznajer, Anne S. Truant, Brigitte Adams, Julie Désir, Ronald Biemann, York Pei, Elisabet Ars, Nuria Lloberas, Alvaro Madrid, Vikas R. Dharnidharka, Anne M. Connolly, Marcia C. Willing, Megan A. Cooper, Richard P. Lifton, Matias Simons, Howard Riezman, Corinne Antignac, Julie D. Saba, Friedhelm Hildebrandt

×

Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome
Rathi Prasad, Irene Hadjidemetriou, Avinaash Maharaj, Eirini Meimaridou, Federica Buonocore, Moin Saleem, Jenny Hurcombe, Agnieszka Bierzynska, Eliana Barbagelata, Ignacio Bergadá, Hamilton Cassinelli, Urmi Das, GOSgene, Ruth Krone, Bulent Hacihamdioglu, Erkan Sari, Ediz Yesilkaya, Helen L. Storr, Maria Clemente, Monica Fernandez-Cancio, Nuria Camats, Nanik Ram, John C. Achermann, Paul P. Van Veldhoven, Leonardo Guasti, Debora Braslavsky, Tulay Guran, Louise A. Metherell
Rathi Prasad, Irene Hadjidemetriou, Avinaash Maharaj, Eirini Meimaridou, Federica Buonocore, Moin Saleem, Jenny Hurcombe, Agnieszka Bierzynska, Eliana Barbagelata, Ignacio Bergadá, Hamilton Cassinelli, Urmi Das, GOSgene, Ruth Krone, Bulent Hacihamdioglu, Erkan Sari, Ediz Yesilkaya, Helen L. Storr, Maria Clemente, Monica Fernandez-Cancio, Nuria Camats, Nanik Ram, John C. Achermann, Paul P. Van Veldhoven, Leonardo Guasti, Debora Braslavsky, Tulay Guran, Louise A. Metherell
View: Text | PDF

Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome

  • Text
  • PDF
Abstract

Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1–/– mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1–/– mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.

Authors

Rathi Prasad, Irene Hadjidemetriou, Avinaash Maharaj, Eirini Meimaridou, Federica Buonocore, Moin Saleem, Jenny Hurcombe, Agnieszka Bierzynska, Eliana Barbagelata, Ignacio Bergadá, Hamilton Cassinelli, Urmi Das, GOSgene, Ruth Krone, Bulent Hacihamdioglu, Erkan Sari, Ediz Yesilkaya, Helen L. Storr, Maria Clemente, Monica Fernandez-Cancio, Nuria Camats, Nanik Ram, John C. Achermann, Paul P. Van Veldhoven, Leonardo Guasti, Debora Braslavsky, Tulay Guran, Louise A. Metherell

×

Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia
Irina Pleines, Joanne Woods, Stephane Chappaz, Verity Kew, Nicola Foad, José Ballester-Beltrán, Katja Aurbach, Chiara Lincetto, Rachael M. Lane, Galina Schevzov, Warren S. Alexander, Douglas J. Hilton, William J. Astle, Kate Downes, Paquita Nurden, Sarah K. Westbury, Andrew D. Mumford, Samya G. Obaji, Peter W. Collins, NIHR BioResource, Fabien Delerue, Lars M. Ittner, Nicole S. Bryce, Mira Holliday, Christine A. Lucas, Edna C. Hardeman, Willem H. Ouwehand, Peter W. Gunning, Ernest Turro, Marloes R. Tijssen, Benjamin T. Kile
Irina Pleines, Joanne Woods, Stephane Chappaz, Verity Kew, Nicola Foad, José Ballester-Beltrán, Katja Aurbach, Chiara Lincetto, Rachael M. Lane, Galina Schevzov, Warren S. Alexander, Douglas J. Hilton, William J. Astle, Kate Downes, Paquita Nurden, Sarah K. Westbury, Andrew D. Mumford, Samya G. Obaji, Peter W. Collins, NIHR BioResource, Fabien Delerue, Lars M. Ittner, Nicole S. Bryce, Mira Holliday, Christine A. Lucas, Edna C. Hardeman, Willem H. Ouwehand, Peter W. Gunning, Ernest Turro, Marloes R. Tijssen, Benjamin T. Kile
View: Text | PDF

Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia

  • Text
  • PDF
Abstract

Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea–induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage–dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.

Authors

Irina Pleines, Joanne Woods, Stephane Chappaz, Verity Kew, Nicola Foad, José Ballester-Beltrán, Katja Aurbach, Chiara Lincetto, Rachael M. Lane, Galina Schevzov, Warren S. Alexander, Douglas J. Hilton, William J. Astle, Kate Downes, Paquita Nurden, Sarah K. Westbury, Andrew D. Mumford, Samya G. Obaji, Peter W. Collins, NIHR BioResource, Fabien Delerue, Lars M. Ittner, Nicole S. Bryce, Mira Holliday, Christine A. Lucas, Edna C. Hardeman, Willem H. Ouwehand, Peter W. Gunning, Ernest Turro, Marloes R. Tijssen, Benjamin T. Kile

×

Blood pressure–associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding
Xue Bai, Kevin D. Mangum, Rachel A. Dee, George A. Stouffer, Craig R. Lee, Akinyemi Oni-Orisan, Cam Patterson, Jonathan C. Schisler, Anthony J. Viera, Joan M. Taylor, Christopher P. Mack
Xue Bai, Kevin D. Mangum, Rachel A. Dee, George A. Stouffer, Craig R. Lee, Akinyemi Oni-Orisan, Cam Patterson, Jonathan C. Schisler, Anthony J. Viera, Joan M. Taylor, Christopher P. Mack
View: Text | PDF

Blood pressure–associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding

  • Text
  • PDF
Abstract

We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure–associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42’s role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9–mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.

Authors

Xue Bai, Kevin D. Mangum, Rachel A. Dee, George A. Stouffer, Craig R. Lee, Akinyemi Oni-Orisan, Cam Patterson, Jonathan C. Schisler, Anthony J. Viera, Joan M. Taylor, Christopher P. Mack

×

PAX6 maintains β cell identity by repressing genes of alternative islet cell types
Avital Swisa, Dana Avrahami, Noa Eden, Jia Zhang, Eseye Feleke, Tehila Dahan, Yamit Cohen-Tayar, Miri Stolovich-Rain, Klaus H. Kaestner, Benjamin Glaser, Ruth Ashery-Padan, Yuval Dor
Avital Swisa, Dana Avrahami, Noa Eden, Jia Zhang, Eseye Feleke, Tehila Dahan, Yamit Cohen-Tayar, Miri Stolovich-Rain, Klaus H. Kaestner, Benjamin Glaser, Ruth Ashery-Padan, Yuval Dor
View: Text | PDF

PAX6 maintains β cell identity by repressing genes of alternative islet cell types

  • Text
  • PDF
Abstract

Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.

Authors

Avital Swisa, Dana Avrahami, Noa Eden, Jia Zhang, Eseye Feleke, Tehila Dahan, Yamit Cohen-Tayar, Miri Stolovich-Rain, Klaus H. Kaestner, Benjamin Glaser, Ruth Ashery-Padan, Yuval Dor

×

LIM domain–binding 1 maintains the terminally differentiated state of pancreatic β cells
Benjamin N. Ediger, Hee-Woong Lim, Christine Juliana, David N. Groff, LaQueena T. Williams, Giselle Dominguez, Jin-Hua Liu, Brandon L. Taylor, Erik R. Walp, Vasumathi Kameswaran, Juxiang Yang, Chengyang Liu, Chad S. Hunter, Klaus H. Kaestner, Ali Naji, Changhong Li, Maike Sander, Roland Stein, Lori Sussel, Kyoung-Jae Won, Catherine Lee May, Doris A. Stoffers
Benjamin N. Ediger, Hee-Woong Lim, Christine Juliana, David N. Groff, LaQueena T. Williams, Giselle Dominguez, Jin-Hua Liu, Brandon L. Taylor, Erik R. Walp, Vasumathi Kameswaran, Juxiang Yang, Chengyang Liu, Chad S. Hunter, Klaus H. Kaestner, Ali Naji, Changhong Li, Maike Sander, Roland Stein, Lori Sussel, Kyoung-Jae Won, Catherine Lee May, Doris A. Stoffers
View: Text | PDF

LIM domain–binding 1 maintains the terminally differentiated state of pancreatic β cells

  • Text
  • PDF
Abstract

The recognition of β cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain β cell identity. LIM domain–binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic β cells. Inducible ablation of LDB1 in mature β cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted β cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of β cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative β cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain–binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) — factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of β cells and is a component of active enhancers in both murine and human islets.

Authors

Benjamin N. Ediger, Hee-Woong Lim, Christine Juliana, David N. Groff, LaQueena T. Williams, Giselle Dominguez, Jin-Hua Liu, Brandon L. Taylor, Erik R. Walp, Vasumathi Kameswaran, Juxiang Yang, Chengyang Liu, Chad S. Hunter, Klaus H. Kaestner, Ali Naji, Changhong Li, Maike Sander, Roland Stein, Lori Sussel, Kyoung-Jae Won, Catherine Lee May, Doris A. Stoffers

×

Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome
Lisa C. Burnett, Charles A. LeDuc, Carlos R. Sulsona, Daniel Paull, Richard Rausch, Sanaa Eddiry, Jayne F. Martin Carli, Michael V. Morabito, Alicja A. Skowronski, Gabriela Hubner, Matthew Zimmer, Liheng Wang, Robert Day, Brynn Levy, Ilene Fennoy, Beatrice Dubern, Christine Poitou, Karine Clement, Merlin G. Butler, Michael Rosenbaum, Jean Pierre Salles, Maithe Tauber, Daniel J. Driscoll, Dieter Egli, Rudolph L. Leibel
Lisa C. Burnett, Charles A. LeDuc, Carlos R. Sulsona, Daniel Paull, Richard Rausch, Sanaa Eddiry, Jayne F. Martin Carli, Michael V. Morabito, Alicja A. Skowronski, Gabriela Hubner, Matthew Zimmer, Liheng Wang, Robert Day, Brynn Levy, Ilene Fennoy, Beatrice Dubern, Christine Poitou, Karine Clement, Merlin G. Butler, Michael Rosenbaum, Jean Pierre Salles, Maithe Tauber, Daniel J. Driscoll, Dieter Egli, Rudolph L. Leibel
View: Text | PDF

Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome

  • Text
  • PDF
Abstract

Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell–derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p–/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p–/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p–/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH–releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.

Authors

Lisa C. Burnett, Charles A. LeDuc, Carlos R. Sulsona, Daniel Paull, Richard Rausch, Sanaa Eddiry, Jayne F. Martin Carli, Michael V. Morabito, Alicja A. Skowronski, Gabriela Hubner, Matthew Zimmer, Liheng Wang, Robert Day, Brynn Levy, Ilene Fennoy, Beatrice Dubern, Christine Poitou, Karine Clement, Merlin G. Butler, Michael Rosenbaum, Jean Pierre Salles, Maithe Tauber, Daniel J. Driscoll, Dieter Egli, Rudolph L. Leibel

×

Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation
Juxiang Cao, Magdalena E. Tyburczy, Joel Moss, Thomas N. Darling, Hans R. Widlund, David J. Kwiatkowski
Juxiang Cao, Magdalena E. Tyburczy, Joel Moss, Thomas N. Darling, Hans R. Widlund, David J. Kwiatkowski
View: Text | PDF

Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation

  • Text
  • PDF
Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor-suppressor gene syndrome caused by inactivating mutations in either TSC1 or TSC2, and the TSC protein complex is an essential regulator of mTOR complex 1 (mTORC1). Patients with TSC develop hypomelanotic macules (white spots), but the molecular mechanisms underlying their formation are not fully characterized. Using human primary melanocytes and a highly pigmented melanoma cell line, we demonstrate that reduced expression of either TSC1 or TSC2 causes reduced pigmentation through mTORC1 activation, which results in hyperactivation of glycogen synthase kinase 3β (GSK3β), followed by phosphorylation of and loss of β-catenin from the nucleus, thereby reducing expression of microphthalmia-associated transcription factor (MITF), and subsequent reductions in tyrosinase and other genes required for melanogenesis. Genetic suppression or pharmacological inhibition of this signaling cascade at multiple levels restored pigmentation. Importantly, primary melanocytes isolated from hypomelanotic macules from 6 patients with TSC all exhibited reduced TSC2 protein expression, and 1 culture showed biallelic mutation in TSC2, one of which was germline and the second acquired in the melanocytes of the hypomelanotic macule. These findings indicate that the TSC/mTORC1/AKT/GSK3β/β-catenin/MITF axis plays a central role in regulating melanogenesis. Interventions that enhance or diminish mTORC1 activity or other nodes in this pathway in melanocytes could potentially modulate pigment production.

Authors

Juxiang Cao, Magdalena E. Tyburczy, Joel Moss, Thomas N. Darling, Hans R. Widlund, David J. Kwiatkowski

×

Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis
Wantae Kim, Sanjoy Kumar Khan, Jelena Gvozdenovic-Jeremic, Youngeun Kim, Jason Dahlman, Hanjun Kim, Ogyi Park, Tohru Ishitani, Eek-hoon Jho, Bin Gao, Yingzi Yang
Wantae Kim, Sanjoy Kumar Khan, Jelena Gvozdenovic-Jeremic, Youngeun Kim, Jason Dahlman, Hanjun Kim, Ogyi Park, Tohru Ishitani, Eek-hoon Jho, Bin Gao, Yingzi Yang
View: Text | PDF

Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis

  • Text
  • PDF
Abstract

Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases Mst1 and Mst2 in liver led to rapid HCC formation and activated Yes-associated protein/tafazzin (YAP/TAZ), STAT3, Wnt/β-catenin, and Notch signaling. Previous work has shown that abnormal activation of these downstream pathways can lead to HCC. Rigorous genetic experiments revealed that Notch signaling forms a positive feedback loop with the Hippo signaling effector YAP/TAZ to promote severe hepatomegaly and rapid HCC initiation and progression. Surprisingly, we found that Wnt/β-catenin signaling activation suppressed HCC formation by inhibiting the positive feedback loop between YAP/TAZ and Notch signaling. Furthermore, we found that STAT3 in hepatocytes is dispensable for HCC formation when macrophage-stimulating 1 and 2 (Mst1 and Mst2) were removed. The molecular network we have identified provides insights into HCC molecular classifications and therapeutic developments for the treatment of liver tumors caused by distinct genetic mutations.

Authors

Wantae Kim, Sanjoy Kumar Khan, Jelena Gvozdenovic-Jeremic, Youngeun Kim, Jason Dahlman, Hanjun Kim, Ogyi Park, Tohru Ishitani, Eek-hoon Jho, Bin Gao, Yingzi Yang

×

MHC class I–associated peptides derive from selective regions of the human genome
Hillary Pearson, Tariq Daouda, Diana Paola Granados, Chantal Durette, Eric Bonneil, Mathieu Courcelles, Anja Rodenbrock, Jean-Philippe Laverdure, Caroline Côté, Sylvie Mader, Sébastien Lemieux, Pierre Thibault, Claude Perreault
Hillary Pearson, Tariq Daouda, Diana Paola Granados, Chantal Durette, Eric Bonneil, Mathieu Courcelles, Anja Rodenbrock, Jean-Philippe Laverdure, Caroline Côté, Sylvie Mader, Sébastien Lemieux, Pierre Thibault, Claude Perreault
View: Text | PDF

MHC class I–associated peptides derive from selective regions of the human genome

  • Text
  • PDF
Abstract

MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.

Authors

Hillary Pearson, Tariq Daouda, Diana Paola Granados, Chantal Durette, Eric Bonneil, Mathieu Courcelles, Anja Rodenbrock, Jean-Philippe Laverdure, Caroline Côté, Sylvie Mader, Sébastien Lemieux, Pierre Thibault, Claude Perreault

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • …
  • 46
  • 47
  • Next →
A hop, exon skip, and a jump for muscular dystrophy
Quan Gao and colleagues developed an exon skipping strategy that generates a truncated, functional γ-sarcoglycan protein and improves defects in muscular dystrophy models…
Published October 12, 2015
Scientific Show StopperGenetics

A curve in the spine
Shunmoogum Patten and colleagues identify variants of POC5 that are associated with idiopathic scoliosis…
Published February 2, 2015
Scientific Show StopperGenetics
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts