Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in
Svjetlana Lovric, Sara Goncalves, Heon Yung Gee, Babak Oskouian, Honnappa Srinivas, Won-Il Choi, Shirlee Shril, Shazia Ashraf, Weizhen Tan, Jia Rao, Merlin Airik, David Schapiro, Daniela A. Braun, Carolin E. Sadowski, Eugen Widmeier, Tilman Jobst-Schwan, Johanna Magdalena Schmidt, Vladimir Girik, Guido Capitani, Jung H. Suh, Noëlle Lachaussée, Christelle Arrondel, Julie Patat, Olivier Gribouval, Monica Furlano, Olivia Boyer, Alain Schmitt, Vincent Vuiblet, Seema Hashmi, Rainer Wilcken, Francois P. Bernier, A. Micheil Innes, Jillian S. Parboosingh, Ryan E. Lamont, Julian P. Midgley, Nicola Wright, Jacek Majewski, Martin Zenker, Franz Schaefer, Navina Kuss, Johann Greil, Thomas Giese, Klaus Schwarz, Vilain Catheline, Denny Schanze, Ingolf Franke, Yves Sznajer, Anne S. Truant, Brigitte Adams, Julie Désir, Ronald Biemann, York Pei, Elisabet Ars, Nuria Lloberas, Alvaro Madrid, Vikas R. Dharnidharka, Anne M. Connolly, Marcia C. Willing, Megan A. Cooper, Richard P. Lifton, Matias Simons, Howard Riezman, Corinne Antignac, Julie D. Saba, Friedhelm Hildebrandt
Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism.
Rathi Prasad, Irene Hadjidemetriou, Avinaash Maharaj, Eirini Meimaridou, Federica Buonocore, Moin Saleem, Jenny Hurcombe, Agnieszka Bierzynska, Eliana Barbagelata, Ignacio Bergadá, Hamilton Cassinelli, Urmi Das, GOSgene, Ruth Krone, Bulent Hacihamdioglu, Erkan Sari, Ediz Yesilkaya, Helen L. Storr, Maria Clemente, Monica Fernandez-Cancio, Nuria Camats, Nanik Ram, John C. Achermann, Paul P. Van Veldhoven, Leonardo Guasti, Debora Braslavsky, Tulay Guran, Louise A. Metherell
Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a
Irina Pleines, Joanne Woods, Stephane Chappaz, Verity Kew, Nicola Foad, José Ballester-Beltrán, Katja Aurbach, Chiara Lincetto, Rachael M. Lane, Galina Schevzov, Warren S. Alexander, Douglas J. Hilton, William J. Astle, Kate Downes, Paquita Nurden, Sarah K. Westbury, Andrew D. Mumford, Samya G. Obaji, Peter W. Collins, NIHR BioResource, Fabien Delerue, Lars M. Ittner, Nicole S. Bryce, Mira Holliday, Christine A. Lucas, Edna C. Hardeman, Willem H. Ouwehand, Peter W. Gunning, Ernest Turro, Marloes R. Tijssen, Benjamin T. Kile
We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure–associated locus within the
Xue Bai, Kevin D. Mangum, Rachel A. Dee, George A. Stouffer, Craig R. Lee, Akinyemi Oni-Orisan, Cam Patterson, Jonathan C. Schisler, Anthony J. Viera, Joan M. Taylor, Christopher P. Mack
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic
Avital Swisa, Dana Avrahami, Noa Eden, Jia Zhang, Eseye Feleke, Tehila Dahan, Yamit Cohen-Tayar, Miri Stolovich-Rain, Klaus H. Kaestner, Benjamin Glaser, Ruth Ashery-Padan, Yuval Dor
The recognition of β cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain β cell identity. LIM domain–binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic β cells. Inducible ablation of LDB1 in mature β cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted β cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of β cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative β cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain–binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) — factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of β cells and is a component of active enhancers in both murine and human islets.
Benjamin N. Ediger, Hee-Woong Lim, Christine Juliana, David N. Groff, LaQueena T. Williams, Giselle Dominguez, Jin-Hua Liu, Brandon L. Taylor, Erik R. Walp, Vasumathi Kameswaran, Juxiang Yang, Chengyang Liu, Chad S. Hunter, Klaus H. Kaestner, Ali Naji, Changhong Li, Maike Sander, Roland Stein, Lori Sussel, Kyoung-Jae Won, Catherine Lee May, Doris A. Stoffers
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene
Lisa C. Burnett, Charles A. LeDuc, Carlos R. Sulsona, Daniel Paull, Richard Rausch, Sanaa Eddiry, Jayne F. Martin Carli, Michael V. Morabito, Alicja A. Skowronski, Gabriela Hubner, Matthew Zimmer, Liheng Wang, Robert Day, Brynn Levy, Ilene Fennoy, Beatrice Dubern, Christine Poitou, Karine Clement, Merlin G. Butler, Michael Rosenbaum, Jean Pierre Salles, Maithe Tauber, Daniel J. Driscoll, Dieter Egli, Rudolph L. Leibel
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor-suppressor gene syndrome caused by inactivating mutations in either
Juxiang Cao, Magdalena E. Tyburczy, Joel Moss, Thomas N. Darling, Hans R. Widlund, David J. Kwiatkowski
Malignant tumors develop through multiple steps of initiation and progression, and tumor initiation is of singular importance in tumor prevention, diagnosis, and treatment. However, the molecular mechanism whereby a signaling network of interacting pathways restrains proliferation in normal cells and prevents tumor initiation is still poorly understood. Here, we have reported that the Hippo, Wnt/β-catenin, and Notch pathways form an interacting network to maintain liver size and suppress hepatocellular carcinoma (HCC). Ablation of the mammalian Hippo kinases
Wantae Kim, Sanjoy Kumar Khan, Jelena Gvozdenovic-Jeremic, Youngeun Kim, Jason Dahlman, Hanjun Kim, Ogyi Park, Tohru Ishitani, Eek-hoon Jho, Bin Gao, Yingzi Yang
MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
Hillary Pearson, Tariq Daouda, Diana Paola Granados, Chantal Durette, Eric Bonneil, Mathieu Courcelles, Anja Rodenbrock, Jean-Philippe Laverdure, Caroline Côté, Sylvie Mader, Sébastien Lemieux, Pierre Thibault, Claude Perreault