Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Endocrinology

  • 289 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →
β cell expression of IGF-I leads to recovery from type 1 diabetes
Mónica George, … , Jean Christophe Devedjian, Fatima Bosch
Mónica George, … , Jean Christophe Devedjian, Fatima Bosch
Published May 1, 2002
Citation Information: J Clin Invest. 2002;109(9):1153-1163. https://doi.org/10.1172/JCI12969.
View: Text | PDF

β cell expression of IGF-I leads to recovery from type 1 diabetes

  • Text
  • PDF
Abstract

Patients with type 1 diabetes are identified after the onset of the disease, when β cell destruction is almost complete. β cell regeneration from islet cell precursors might reverse this disease, but factors that can induce β cell neogenesis and replication and prevent a new round of autoimmune destruction remain to be identified. Here we show that expression of IGF-I in β cells of transgenic mice (in both C57BL/6–SJL and CD-1 genetic backgrounds) counteracts cytotoxicity and insulitis after treatment with multiple low doses of streptozotocin (STZ). STZ-treated nontransgenic mice developed high hyperglycemia and hypoinsulinemia, lost body weight, and died. In contrast, STZ-treated C57BL/6–SJL transgenic mice showed mild hyperglycemia for about 1 month, after which they normalized glycemia and survived. After STZ treatment, all CD-1 mice developed high hyperglycemia, hypoinsulinemia, polydipsia, and polyphagia. However, STZ-treated CD-1 transgenic mice gradually normalized all metabolic parameters and survived. β cell mass increased in parallel as a result of neogenesis and β cell replication. Thus, our results indicate that local expression of IGF-I in β cells regenerates pancreatic islets and counteracts type 1 diabetes, suggesting that IGF-I gene transfer to the pancreas might be a suitable therapy for this disease.

Authors

Mónica George, Eduard Ayuso, Alba Casellas, Cristina Costa, Jean Christophe Devedjian, Fatima Bosch

×

Parathyroid hormone is essential for normal fetal bone formation
Dengshun Miao, … , Andrew C. Karaplis, David Goltzman
Dengshun Miao, … , Andrew C. Karaplis, David Goltzman
Published May 1, 2002
Citation Information: J Clin Invest. 2002;109(9):1173-1182. https://doi.org/10.1172/JCI14817.
View: Text | PDF

Parathyroid hormone is essential for normal fetal bone formation

  • Text
  • PDF
Abstract

Parathyroid hormone (PTH) is a potent pharmacologic inducer of new bone formation, but no physiologic anabolic effect of PTH on adult bone has been described. We investigated the role of PTH in fetal skeletal development by comparing newborn mice lacking either PTH, PTH-related peptide (PTHrP), or both peptides. PTH-deficient mice were dysmorphic but viable, whereas mice lacking PTHrP died at birth with dyschondroplasia. PTH-deficient mice uniquely demonstrated diminished cartilage matrix mineralization, decreased neovascularization with reduced expression of angiopoietin-1, and reduced metaphyseal osteoblasts and trabecular bone. Compound mutants displayed the combined cartilaginous and osseous defects of both single mutants. These results indicate that coordinated action of both PTH and PTHrP are required to achieve normal fetal skeletal morphogenesis, and they demonstrate an essential function for PTH at the cartilage-bone interface. The effect of PTH on fetal osteoblasts may be relevant to its postnatal anabolic effects on trabecular bone.

Authors

Dengshun Miao, Bin He, Andrew C. Karaplis, David Goltzman

×

Pdx1 restores β cell function in Irs2 knockout mice
Jake A. Kushner, … , Marc R. Montminy, Morris F. White
Jake A. Kushner, … , Marc R. Montminy, Morris F. White
Published May 1, 2002
Citation Information: J Clin Invest. 2002;109(9):1193-1201. https://doi.org/10.1172/JCI14439.
View: Text | PDF

Pdx1 restores β cell function in Irs2 knockout mice

  • Text
  • PDF
Abstract

The homeodomain transcription factor Pdx1 is required for pancreas development, including the differentiation and function of β cells. Mutations in Pdx1 or upstream hepatocyte nuclear factors cause autosomal forms of early-onset diabetes (maturity-onset diabetes of the young [MODY]). In mice, the Irs2 branch of the insulin/Igf signaling system mediates peripheral insulin action and pancreatic β cell growth and function. To investigate whether β cell failure in Irs2–/– mice might be related to dysfunction of MODY-related transcription factors, we measured the expression of Pdx1 in islets from young Irs2–/– mice. Before the onset of diabetes, Pdx1 was reduced in islets from Irs2–/– mice, whereas it was expressed normally in islets from wild-type or Irs1–/– mice, which do not develop diabetes. Whereas male Irs2–/–Pdx1+/+ mice developed diabetes between 8 and 10 weeks of age, haploinsufficiency for Pdx1 caused diabetes in newborn Irs2–/– mice. By contrast, transgenic expression of Pdx1 restored β cell mass and function in Irs2–/– mice and promoted glucose tolerance throughout life, as these mice survived for at least 20 months without diabetes. Our results suggest that dysregulation of Pdx1 might represent a common link between ordinary type 2 diabetes and MODY.

Authors

Jake A. Kushner, Jing Ye, Markus Schubert, Deborah J. Burks, Matthew A. Dow, Carrie L. Flint, Sanjoy Dutta, Christopher V.E. Wright, Marc R. Montminy, Morris F. White

×

Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids
Robert S. Weinstein, … , A. Michael Parfitt, Stavros C. Manolagas
Robert S. Weinstein, … , A. Michael Parfitt, Stavros C. Manolagas
Published April 15, 2002
Citation Information: J Clin Invest. 2002;109(8):1041-1048. https://doi.org/10.1172/JCI14538.
View: Text | PDF

Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids

  • Text
  • PDF
Abstract

Glucocorticoids depress bone formation by inhibiting osteoblastogenesis and increasing osteoblast apoptosis. However, the role of bone resorption in the initial rapid phase of bone loss characteristic of glucocorticoid-induced osteoporosis is unexplained, and the reason for the efficacy of bisphosphonates in this condition remains unknown. We report that in murine osteoclast cultures, glucocorticoids prolonged the baseline survival of osteoclasts and antagonized bisphosphonate-induced caspase activation and apoptosis by a glucocorticoid receptor–mediated action. Consistent with the in vitro evidence, in a murine model of glucocorticoid-induced osteoporosis, the number of cancellous osteoclasts increased, even though osteoclast progenitor number was reduced. Moreover, in mice receiving both glucocorticoids and bisphosphonates, the expected proapoptotic effect of bisphosphonates on osteoclasts was abrogated, as evidenced by maintenance of osteoclast numbers and, additionally, loss of bone density. In contrast, bisphosphonate administration prevented glucocorticoid-induced osteoblast apoptosis. These results indicate that the early loss of bone with glucocorticoid excess is caused by extension of the life span of pre-existing osteoclasts, an effect not preventable by bisphosphonates. Therefore, the early beneficial effects of these agents must be due, in part, to prolonging the life span of osteoblasts.

Authors

Robert S. Weinstein, Jin-Ran Chen, Cara C. Powers, Scott A. Stewart, Reid D. Landes, Teresita Bellido, Robert L. Jilka, A. Michael Parfitt, Stavros C. Manolagas

×

Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1
Hubert C. Chen, … , Robert H. Eckel, Robert V. Farese Jr.
Hubert C. Chen, … , Robert H. Eckel, Robert V. Farese Jr.
Published April 15, 2002
Citation Information: J Clin Invest. 2002;109(8):1049-1055. https://doi.org/10.1172/JCI14672.
View: Text | PDF

Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1

  • Text
  • PDF
Abstract

Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin and to leptin. Importantly, DGAT1 deficiency protects against insulin resistance and obesity in agouti yellow mice, a model of severe leptin resistance. In contrast, DGAT1 deficiency did not affect energy and glucose metabolism in leptin-deficient (ob/ob) mice, possibly due in part to a compensatory upregulation of DGAT2 expression in the absence of leptin. Our results suggest that inhibition of DGAT1 may be useful in treating insulin resistance and leptin resistance in human obesity.

Authors

Hubert C. Chen, Steven J. Smith, Zuleika Ladha, Dalan R. Jensen, Luis D. Ferreira, Leslie K. Pulawa, James G. McGuire, Robert E. Pitas, Robert H. Eckel, Robert V. Farese Jr.

×

Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element
Thierry Claudel, … , Folkert Kuipers, Bart Staels
Thierry Claudel, … , Folkert Kuipers, Bart Staels
Published April 1, 2002
Citation Information: J Clin Invest. 2002;109(7):961-971. https://doi.org/10.1172/JCI14505.
View: Text | PDF

Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element

  • Text
  • PDF
Abstract

Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid–activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells.

Authors

Thierry Claudel, Ekkehard Sturm, Hélène Duez, Inés Pineda Torra, Audrey Sirvent, Vladimir Kosykh, Jean-Charles Fruchart, Jean Dallongeville, Dean W. Hum, Folkert Kuipers, Bart Staels

×

Human sex hormone–binding globulin variants associated with hyperandrogenism and ovarian dysfunction
Kevin N. Hogeveen, … , Benoît Soudan, Geoffrey L. Hammond
Kevin N. Hogeveen, … , Benoît Soudan, Geoffrey L. Hammond
Published April 1, 2002
Citation Information: J Clin Invest. 2002;109(7):973-981. https://doi.org/10.1172/JCI14060.
View: Text | PDF

Human sex hormone–binding globulin variants associated with hyperandrogenism and ovarian dysfunction

  • Text
  • PDF
Abstract

The access of testosterone and estradiol to target tissues is regulated by sex hormone–binding globulin (SHBG) in human blood. Serum SHBG levels are low in patients with hyperandrogenism, especially in association with polycystic ovarian syndrome (PCOS) and in individuals at risk for diabetes and heart disease. Here, we identify SHBG coding region variations from a compound heterozygous patient who presented with severe hyperandrogenism during pregnancy. Serum SHBG levels in this patient measured 2 years after her pregnancy were exceptionally low, and her non–protein-bound testosterone concentrations greatly exceeded the normal reference range. A single-nucleotide polymorphism within the proband’s maternally derived SHBG allele encodes a missense mutation, P156L, which allows for normal steroid ligand binding but causes abnormal glycosylation and inefficient secretion of SHBG. This polymorphism was identified in four other patients with either PCOS, ioiopathic hirsutism, or ovarian failure. The proband’s paternal SHBG allele carries a single-nucleotide deletion within exon 8, producing a reading-frame shift within the codon for E326 and a premature termination codon. CHO cells transfected with a SHBG cDNA carrying this mutation fail to secrete the predicted truncated form of SHBG. To our knowledge, these are the first examples of human SHBG variants linked to hyperandrogenism and ovarian dysfunction.

Authors

Kevin N. Hogeveen, Patrice Cousin, Michel Pugeat, Didier Dewailly, Benoît Soudan, Geoffrey L. Hammond

×

Suppression of body fat accumulation in myostatin-deficient mice
Alexandra C. McPherron, Se-Jin Lee
Alexandra C. McPherron, Se-Jin Lee
Published March 1, 2002
Citation Information: J Clin Invest. 2002;109(5):595-601. https://doi.org/10.1172/JCI13562.
View: Text | PDF

Suppression of body fat accumulation in myostatin-deficient mice

  • Text
  • PDF
Abstract

Myostatin is a TGF-β family member that acts as a negative regulator of muscle growth. Mice lacking the myostatin gene (Mstn) have a widespread increase in skeletal muscle mass resulting from a combination of muscle fiber hypertrophy and hyperplasia. Here we show that Mstn-null mice have a significant reduction in fat accumulation with increasing age compared with wild-type littermates, even in the setting of normal food intake (relative to body weight), normal body temperature, and a slightly decreased resting metabolic rate. To investigate whether myostatin might be an effective target for suppressing the development of obesity in settings of abnormal fat accumulation, we analyzed the effect of the Mstn mutation in two genetic models of obesity, agouti lethal yellow (Ay) and obese (Lepob/ob). In each case, loss of Mstn led to a partial suppression of fat accumulation and of abnormal glucose metabolism. Our findings raise the possibility that pharmacological agents that block myostatin function may be useful not only for enhancing muscle growth, but also for slowing or preventing the development of obesity and type 2 diabetes.

Authors

Alexandra C. McPherron, Se-Jin Lee

×

Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression
Darrell D. Belke, … , C. Ronald Kahn, E. Dale Abel
Darrell D. Belke, … , C. Ronald Kahn, E. Dale Abel
Published March 1, 2002
Citation Information: J Clin Invest. 2002;109(5):629-639. https://doi.org/10.1172/JCI13946.
View: Text | PDF

Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression

  • Text
  • PDF
Abstract

To investigate the role of insulin signaling on postnatal cardiac development, physiology, and cardiac metabolism, we generated mice with a cardiomyocyte-selective insulin receptor knockout (CIRKO) using cre/loxP recombination. Hearts of CIRKO mice were reduced in size by 20–30% due to reduced cardiomyocyte size and had persistent expression of the fetal β-myosin heavy chain isoform. In CIRKO hearts, glucose transporter 1 (GLUT1) expression was reduced by about 50%, but there was a twofold increase in GLUT4 expression as well as increased rates of cardiac glucose uptake in vivo and increased glycolysis in isolated working hearts. Fatty acid oxidation rates were diminished as a result of reduced expression of enzymes that catalyze mitochondrial β-oxidation. Although basal rates of glucose oxidation were reduced, insulin unexpectedly stimulated glucose oxidation and glycogenolysis in CIRKO hearts. Cardiac performance in vivo and in isolated hearts was mildly impaired. Thus, insulin signaling plays an important developmental role in regulating postnatal cardiac size, myosin isoform expression, and the switching of cardiac substrate utilization from glucose to fatty acids. Insulin may also modulate cardiac myocyte metabolism through paracrine mechanisms by activating insulin receptors in other cell types within the heart.

Authors

Darrell D. Belke, Sandrine Betuing, Martin J. Tuttle, Christophe Graveleau, Martin E. Young, Mark Pham, Dongfang Zhang, Robert C. Cooksey, Donald A. McClain, Sheldon E. Litwin, Heinrich Taegtmeyer, David Severson, C. Ronald Kahn, E. Dale Abel

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts