Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Endocrinology

  • 296 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 17
  • 18
  • 19
  • …
  • 29
  • 30
  • Next →
Rpl13a small nucleolar RNAs regulate systemic glucose metabolism
Jiyeon Lee, … , Daniel S. Ory, Jean E. Schaffer
Jiyeon Lee, … , Daniel S. Ory, Jean E. Schaffer
Published November 7, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88069.
View: Text | PDF

Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

  • Text
  • PDF
Abstract

Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation.

Authors

Jiyeon Lee, Alexis N. Harris, Christopher L. Holley, Jana Mahadevan, Kelly D. Pyles, Zeno Lavagnino, David E. Scherrer, Hideji Fujiwara, Rohini Sidhu, Jessie Zhang, Stanley Ching-Cheng Huang, David W. Piston, Maria S. Remedi, Fumihiko Urano, Daniel S. Ory, Jean E. Schaffer

×

ChREBP regulates fructose-induced glucose production independently of insulin signaling
Mi-Sung Kim, … , Michelle Lai, Mark A. Herman
Mi-Sung Kim, … , Michelle Lai, Mark A. Herman
Published September 26, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI81993.
View: Text | PDF

ChREBP regulates fructose-induced glucose production independently of insulin signaling

  • Text
  • PDF
Abstract

Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance.

Authors

Mi-Sung Kim, Sarah A. Krawczyk, Ludivine Doridot, Alan J. Fowler, Jennifer X. Wang, Sunia A. Trauger, Hye-Lim Noh, Hee Joon Kang, John K. Meissen, Matthew Blatnik, Jason K. Kim, Michelle Lai, Mark A. Herman

×

β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals
Bharath K. Mani, … , Chelsea Hepler, Jeffrey M. Zigman
Bharath K. Mani, … , Chelsea Hepler, Jeffrey M. Zigman
Published August 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86270.
View: Text | PDF

β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

  • Text
  • PDF
Abstract

Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children.

Authors

Bharath K. Mani, Sherri Osborne-Lawrence, Prasanna Vijayaraghavan, Chelsea Hepler, Jeffrey M. Zigman

×

Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis
Brian T. O’Neill, … , K. Sreekumaran Nair, C. Ronald Kahn
Brian T. O’Neill, … , K. Sreekumaran Nair, C. Ronald Kahn
Published August 15, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86522.
View: Text | PDF

Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis

  • Text
  • PDF
Abstract

Diabetes strongly impacts protein metabolism, particularly in skeletal muscle. Insulin and IGF-1 enhance muscle protein synthesis through their receptors, but the relative roles of each in muscle proteostasis have not been fully elucidated. Using mice with muscle-specific deletion of the insulin receptor (M-IR–/– mice), the IGF-1 receptor (M-IGF1R–/– mice), or both (MIGIRKO mice), we assessed the relative contributions of IR and IGF1R signaling to muscle proteostasis. In differentiated muscle, IR expression predominated over IGF1R expression, and correspondingly, M-IR–/– mice displayed a moderate reduction in muscle mass whereas M-IGF1R–/– mice did not. However, these receptors serve complementary roles, such that double-knockout MIGIRKO mice displayed a marked reduction in muscle mass that was linked to increases in proteasomal and autophagy-lysosomal degradation, accompanied by a high-protein-turnover state. Combined muscle-specific deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO mice reversed increased autophagy and completely rescued muscle mass without changing proteasomal activity. These data indicate that signaling via IR is more important than IGF1R in controlling proteostasis in differentiated muscle. Nonetheless, the overlap of IR and IGF1R signaling is critical to the regulation of muscle protein turnover, and this regulation depends on suppression of FoxO-regulated, autophagy-mediated protein degradation.

Authors

Brian T. O’Neill, Kevin Y. Lee, Katherine Klaus, Samir Softic, Megan T. Krumpoch, Joachim Fentz, Kristin I. Stanford, Matthew M. Robinson, Weikang Cai, Andre Kleinridders, Renata O. Pereira, Michael F. Hirshman, E. Dale Abel, Domenico Accili, Laurie J. Goodyear, K. Sreekumaran Nair, C. Ronald Kahn

×

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas
Davide Calebiro, … , Luca Persani, Ralf Paschke
Davide Calebiro, … , Luca Persani, Ralf Paschke
Published August 8, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84894.
View: Text | PDF

Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas

  • Text
  • PDF
Abstract

Autonomous thyroid adenomas (ATAs) are a frequent cause of hyperthyroidism. Mutations in the genes encoding the TSH receptor (TSHR) or the Gs protein α subunit (GNAS) are found in approximately 70% of ATAs. The involvement of other genes and the pathogenesis of the remaining cases are presently unknown. Here, we performed whole-exome sequencing in 19 ATAs that were paired with normal DNA samples and identified a recurrent hot-spot mutation (c.1712A>G; p.Gln571Arg) in the enhancer of zeste homolog 1 (EZH1) gene, which codes for a catalytic subunit of the polycomb complex. Targeted screening in an independent cohort confirmed that this mutation occurs with high frequency (27%) in ATAs. EZH1 mutations were strongly associated with known (TSHR, GNAS) or presumed (adenylate cyclase 9 [ADCY9]) alterations in cAMP pathway genes. Furthermore, functional studies revealed that the p.Gln571Arg EZH1 mutation caused increased histone H3 trimethylation and increased proliferation of thyroid cells. In summary, this study revealed that a hot-spot mutation in EZH1 is the second most frequent genetic alteration in ATAs. The association between EZH1 and TSHR mutations suggests a 2-hit model for the pathogenesis of these tumors, whereby constitutive activation of the cAMP pathway and EZH1 mutations cooperate to induce the hyperproliferation of thyroid cells.

Authors

Davide Calebiro, Elisa S. Grassi, Markus Eszlinger, Cristina L. Ronchi, Amod Godbole, Kerstin Bathon, Fabiana Guizzardi, Tiziana de Filippis, Knut Krohn, Holger Jaeschke, Thomas Schwarzmayr, Rifat Bircan, Hulya Iliksu Gozu, Seda Sancak, Marek Niedziela, Tim M. Strom, Martin Fassnacht, Luca Persani, Ralf Paschke

×

Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity
Jing Cui, … , Tian Xu, Xiaohui Wu
Jing Cui, … , Tian Xu, Xiaohui Wu
Published August 8, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85676.
View: Text | PDF

Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity

  • Text
  • PDF
Abstract

A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.

Authors

Jing Cui, Yi Ding, Shu Chen, Xiaoqiang Zhu, Yichen Wu, Mingliang Zhang, Yaxin Zhao, Tong-Ruei R. Li, Ling V. Sun, Shimin Zhao, Yuan Zhuang, Weiping Jia, Lei Xue, Min Han, Tian Xu, Xiaohui Wu

×

Stress-impaired transcription factor expression and insulin secretion in transplanted human islets
Chunhua Dai, … , Roland Stein, Alvin C. Powers
Chunhua Dai, … , Roland Stein, Alvin C. Powers
Published April 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83657.
View: Text | PDF

Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

  • Text
  • PDF
Abstract

Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity.

Authors

Chunhua Dai, Nora S. Kayton, Alena Shostak, Greg Poffenberger, Holly A. Cyphert, Radhika Aramandla, Courtney Thompson, Ioannis G. Papagiannis, Christopher Emfinger, Masakazu Shiota, John M. Stafford, Dale L. Greiner, Pedro L. Herrera, Leonard D. Shultz, Roland Stein, Alvin C. Powers

×

Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning
Dianxin Liu, … , Michael P. Czech, Sheila Collins
Dianxin Liu, … , Michael P. Czech, Sheila Collins
Published March 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83532.
View: Text | PDF

Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning

  • Text
  • PDF
Abstract

A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease.

Authors

Dianxin Liu, Marica Bordicchia, Chaoying Zhang, Huafeng Fang, Wan Wei, Jian-Liang Li, Adilson Guilherme, Kalyani Guntur, Michael P. Czech, Sheila Collins

×

Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases
Nadine Dragin, … , Rozen Le Panse, Sonia Berrih-Aknin
Nadine Dragin, … , Rozen Le Panse, Sonia Berrih-Aknin
Published March 21, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI81894.
View: Text | PDF

Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases

  • Text
  • PDF
Abstract

Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α–deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.

Authors

Nadine Dragin, Jacky Bismuth, Géraldine Cizeron-Clairac, Maria Grazia Biferi, Claire Berthault, Alain Serraf, Rémi Nottin, David Klatzmann, Ana Cumano, Martine Barkats, Rozen Le Panse, Sonia Berrih-Aknin

×

Gonadal steroid–dependent effects on bone turnover and bone mineral density in men
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Published February 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84137.
View: Text | PDF

Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

  • Text
  • PDF
Abstract

BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain.

METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men.

RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men.

CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton.

TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114.

FUNDING. AbbVie Inc., AstraZeneca Pharmaceuticals LP, NIH.

Authors

Joel S. Finkelstein, Hang Lee, Benjamin Z. Leder, Sherri-Ann M. Burnett-Bowie, David W. Goldstein, Christopher W. Hahn, Sarah C. Hirsch, Alex Linker, Nicholas Perros, Andrew B. Servais, Alexander P. Taylor, Matthew L. Webb, Jonathan M. Youngner, Elaine W. Yu

×
  • ← Previous
  • 1
  • 2
  • …
  • 17
  • 18
  • 19
  • …
  • 29
  • 30
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts