Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

  • 492 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 36
  • 37
  • 38
  • …
  • 49
  • 50
  • Next →
Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines
Shafie Fazel, Massimo Cimini, Liwen Chen, Shuhong Li, Denis Angoulvant, Paul Fedak, Subodh Verma, Richard D. Weisel, Armand Keating, Ren-Ke Li
Shafie Fazel, Massimo Cimini, Liwen Chen, Shuhong Li, Denis Angoulvant, Paul Fedak, Subodh Verma, Richard D. Weisel, Armand Keating, Ren-Ke Li
View: Text | PDF

Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines

  • Text
  • PDF
Abstract

Clinical trials of bone marrow stem/progenitor cell therapy after myocardial infarction (MI) have shown promising results, but the mechanism of benefit is unclear. We examined the nature of endogenous myocardial repair that is dependent on the function of the c-kit receptor, which is expressed on bone marrow stem/progenitor cells and on recently identified cardiac stem cells. MI increased the number of c-kit+ cells in the heart. These cells were traced back to a bone marrow origin, using genetic tagging in bone marrow chimeric mice. The recruited c-kit+ cells established a proangiogenic milieu in the infarct border zone by increasing VEGF and by reversing the cardiac ratio of angiopoietin-1 to angiopoietin-2. These oscillations potentiated endothelial mitogenesis and were associated with the establishment of an extensive myofibroblast-rich repair tissue. Mutations in the c-kit receptor interfered with the mobilization of the cells to the heart, prevented angiogenesis, diminished myofibroblast-rich repair tissue formation, and led to precipitous cardiac failure and death. Replacement of the mutant bone marrow with wild-type cells rescued the cardiomyopathic phenotype. We conclude that, consistent with their documented role in tumorigenesis, bone marrow c-kit+ cells act as key regulators of the angiogenic switch in infarcted myocardium, thereby driving efficient cardiac repair.

Authors

Shafie Fazel, Massimo Cimini, Liwen Chen, Shuhong Li, Denis Angoulvant, Paul Fedak, Subodh Verma, Richard D. Weisel, Armand Keating, Ren-Ke Li

×

CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy
Johannes Backs, Kunhua Song, Svetlana Bezprozvannaya, Shurong Chang, Eric N. Olson
Johannes Backs, Kunhua Song, Svetlana Bezprozvannaya, Shurong Chang, Eric N. Olson
View: Text | PDF

CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy

  • Text
  • PDF
Abstract

Class IIa histone deacetylases (HDACs) regulate a variety of cellular processes, including cardiac growth, bone development, and specification of skeletal muscle fiber type. Multiple serine/threonine kinases control the subcellular localization of these HDACs by phosphorylation of common serine residues, but whether certain class IIa HDACs respond selectively to specific kinases has not been determined. Here we show that calcium/calmodulin-dependent kinase II (CaMKII) signals specifically to HDAC4 by binding to a unique docking site that is absent in other class IIa HDACs. Phosphorylation of HDAC4 by CaMKII promotes nuclear export and prevents nuclear import of HDAC4, with consequent derepression of HDAC target genes. In cardiomyocytes, CaMKII phosphorylation of HDAC4 results in hypertrophic growth, which can be blocked by a signal-resistant HDAC4 mutant. These findings reveal a central role for HDAC4 in CaMKII signaling pathways and have implications for the control of gene expression by calcium signaling in a variety of cell types.

Authors

Johannes Backs, Kunhua Song, Svetlana Bezprozvannaya, Shurong Chang, Eric N. Olson

×

Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy
Eduardo Garcia-Gras, Raffaella Lombardi, Michael J. Giocondo, James T. Willerson, Michael D. Schneider, Dirar S. Khoury, Ali J. Marian
Eduardo Garcia-Gras, Raffaella Lombardi, Michael J. Giocondo, James T. Willerson, Michael D. Schneider, Dirar S. Khoury, Ali J. Marian
View: Text | PDF

Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy

  • Text
  • PDF
Abstract

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is a genetic disease caused by mutations in desmosomal proteins. The phenotypic hallmark of ARVC is fibroadipocytic replacement of cardiac myocytes, which is a unique phenotype with a yet-to-be-defined molecular mechanism. We established atrial myocyte cell lines expressing siRNA against desmoplakin (DP), responsible for human ARVC. We show suppression of DP expression leads to nuclear localization of the desmosomal protein plakoglobin and a 2-fold reduction in canonical Wnt/β-catenin signaling through Tcf/Lef1 transcription factors. The ensuing phenotype is increased expression of adipogenic and fibrogenic genes and accumulation of fat droplets. We further show that cardiac-restricted deletion of Dsp, encoding DP, impairs cardiac morphogenesis and leads to high embryonic lethality in the homozygous state. Heterozygous DP-deficient mice exhibited excess adipocytes and fibrosis in the myocardium, increased myocyte apoptosis, cardiac dysfunction, and ventricular arrhythmias, thus recapitulating the phenotype of human ARVC. We believe our results provide for a novel molecular mechanism for the pathogenesis of ARVC and establish cardiac-restricted DP-deficient mice as a model for human ARVC. These findings could provide for the opportunity to identify new diagnostic markers and therapeutic targets in patients with ARVC.

Authors

Eduardo Garcia-Gras, Raffaella Lombardi, Michael J. Giocondo, James T. Willerson, Michael D. Schneider, Dirar S. Khoury, Ali J. Marian

×

The A2B adenosine receptor protects against inflammation and excessive vascular adhesion
Dan Yang, Ying Zhang, Hao G. Nguyen, Milka Koupenova, Anil K. Chauhan, Maria Makitalo, Matthew R. Jones, Cynthia St. Hilaire, David C. Seldin, Paul Toselli, Edward Lamperti, Barbara M. Schreiber, Haralambos Gavras, Denisa D. Wagner, Katya Ravid
Dan Yang, Ying Zhang, Hao G. Nguyen, Milka Koupenova, Anil K. Chauhan, Maria Makitalo, Matthew R. Jones, Cynthia St. Hilaire, David C. Seldin, Paul Toselli, Edward Lamperti, Barbara M. Schreiber, Haralambos Gavras, Denisa D. Wagner, Katya Ravid
View: Text | PDF

The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

  • Text
  • PDF
Abstract

Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target.

Authors

Dan Yang, Ying Zhang, Hao G. Nguyen, Milka Koupenova, Anil K. Chauhan, Maria Makitalo, Matthew R. Jones, Cynthia St. Hilaire, David C. Seldin, Paul Toselli, Edward Lamperti, Barbara M. Schreiber, Haralambos Gavras, Denisa D. Wagner, Katya Ravid

×

Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction
Cinzia Perrino, Sathyamangla V. Naga Prasad, Lan Mao, Takahisa Noma, Zhen Yan, Hyung-Suk Kim, Oliver Smithies, Howard A. Rockman
Cinzia Perrino, Sathyamangla V. Naga Prasad, Lan Mao, Takahisa Noma, Zhen Yan, Hyung-Suk Kim, Oliver Smithies, Howard A. Rockman
View: Text | PDF

Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction

  • Text
  • PDF
Abstract

For over a century, there has been intense debate as to the reason why some cardiac stresses are pathological and others are physiological. One long-standing theory is that physiological overloads such as exercise are intermittent, while pathological overloads such as hypertension are chronic. In this study, we hypothesized that the nature of the stress on the heart, rather than its duration, is the key determinant of the maladaptive phenotype. To test this, we applied intermittent pressure overload on the hearts of mice and tested the roles of duration and nature of the stress on the development of cardiac failure. Despite a mild hypertrophic response, preserved systolic function, and a favorable fetal gene expression profile, hearts exposed to intermittent pressure overload displayed pathological features. Importantly, intermittent pressure overload caused diastolic dysfunction, altered β-adrenergic receptor (βAR) function, and vascular rarefaction before the development of cardiac hypertrophy, which were largely normalized by preventing the recruitment of PI3K by βAR kinase 1 to ligand-activated receptors. Thus stress-induced activation of pathogenic signaling pathways, not the duration of stress or the hypertrophic growth per se, is the molecular trigger of cardiac dysfunction.

Authors

Cinzia Perrino, Sathyamangla V. Naga Prasad, Lan Mao, Takahisa Noma, Zhen Yan, Hyung-Suk Kim, Oliver Smithies, Howard A. Rockman

×

Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel
Kiyoshi Nakagawa, Vijaykumar R. Holla, Yuan Wei, Wen-Hui Wang, Arnaldo Gatica, Shouzou Wei, Shaojun Mei, Crystal M. Miller, Dae Ryong Cha, Edward Price, Roy Zent, Ambra Pozzi, Matthew D. Breyer, Youfei Guan, John R. Falck, Michael R. Waterman, Jorge H. Capdevila
Kiyoshi Nakagawa, Vijaykumar R. Holla, Yuan Wei, Wen-Hui Wang, Arnaldo Gatica, Shouzou Wei, Shaojun Mei, Crystal M. Miller, Dae Ryong Cha, Edward Price, Roy Zent, Ambra Pozzi, Matthew D. Breyer, Youfei Guan, John R. Falck, Michael R. Waterman, Jorge H. Capdevila
View: Text | PDF

Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel

  • Text
  • PDF
Abstract

Functional and biochemical data have suggested a role for the cytochrome P450 arachidonate monooxygenases in the pathophysiology of hypertension, a leading cause of cardiovascular, cerebral, and renal morbidity and mortality. We show here that disruption of the murine cytochrome P450, family 4, subfamily a, polypeptide 10 (Cyp4a10) gene causes a type of hypertension that is, like most human hypertension, dietary salt sensitive. Cyp4a10–/– mice fed low-salt diets were normotensive but became hypertensive when fed normal or high-salt diets. Hypertensive Cyp4a10–/– mice had a dysfunctional kidney epithelial sodium channel and became normotensive when administered amiloride, a selective inhibitor of this sodium channel. These studies (a) establish a physiological role for the arachidonate monooxygenases in renal sodium reabsorption and blood pressure regulation, (b) demonstrate that a dysfunctional Cyp4a10 gene causes alterations in the gating activity of the kidney epithelial sodium channel, and (c) identify a conceptually novel approach for studies of the molecular basis of human hypertension. It is expected that these results could lead to new strategies for the early diagnosis and clinical management of this devastating disease.

Authors

Kiyoshi Nakagawa, Vijaykumar R. Holla, Yuan Wei, Wen-Hui Wang, Arnaldo Gatica, Shouzou Wei, Shaojun Mei, Crystal M. Miller, Dae Ryong Cha, Edward Price, Roy Zent, Ambra Pozzi, Matthew D. Breyer, Youfei Guan, John R. Falck, Michael R. Waterman, Jorge H. Capdevila

×

Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function
Yan Cheng, Miao Wang, Ying Yu, John Lawson, Colin D. Funk, Garret A. FitzGerald
Yan Cheng, Miao Wang, Ying Yu, John Lawson, Colin D. Funk, Garret A. FitzGerald
View: Text | PDF

Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function

  • Text
  • PDF
Abstract

We investigated the mechanisms by which inhibitors of prostaglandin G/H synthase-2 (PGHS-2; known colloquially as COX-2) increase the incidence of myocardial infarction and stroke. These inhibitors are believed to exert both their beneficial and their adverse effects by suppression of PGHS-2–derived prostacyclin (PGI2) and PGE2. Therefore, the challenge remains to identify a mechanism whereby PGI2 and PGE2 expression can be suppressed while avoiding adverse cardiovascular events. Here, selective inhibition, knockout, or mutation of PGHS-2, or deletion of the receptor for PGHS-2–derived PGI2, was shown to accelerate thrombogenesis and elevate blood pressure in mice. These responses were attenuated by COX-1 knock down, which mimics the beneficial effects of low-dose aspirin. PGE2 biosynthesis is catalyzed by the coordinate actions of COX enzymes and microsomal PGE synthase-1 (mPGES-1). We show that deletion of mPGES-1 depressed PGE2 expression, augmented PGI2 expression, and had no effect on thromboxane biosynthesis in vivo. Most importantly, mPGES-1 deletion affected neither thrombogenesis nor blood pressure. These results suggest that inhibitors of mPGES-1 may retain their antiinflammatory efficacy by depressing PGE2, while avoiding the adverse cardiovascular consequences associated with PGHS-2–mediated PGI2 suppression.

Authors

Yan Cheng, Miao Wang, Ying Yu, John Lawson, Colin D. Funk, Garret A. FitzGerald

×

HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway
Fumihiko Matsuura, Nan Wang, Wengen Chen, Xian-Cheng Jiang, Alan R. Tall
Fumihiko Matsuura, Nan Wang, Wengen Chen, Xian-Cheng Jiang, Alan R. Tall
View: Text | PDF

HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway

  • Text
  • PDF
Abstract

Genetic deficiency or inhibition of cholesteryl ester transfer protein (CETP) leads to a marked increase in plasma levels of large HDL-2 particles. However, there is concern that such particles may be dysfunctional in terms of their ability to promote cholesterol efflux from macrophages. Recently, the ATP-binding cassette transporter ABCG1, a macrophage liver X receptor (LXR) target, has been shown to stimulate cholesterol efflux to HDL. We have assessed the ability of HDL from subjects with homozygous deficiency of CETP (CETP-D) to promote cholesterol efflux from macrophages and have evaluated the role of ABCG1 and other factors in this process. CETP-D HDL-2 caused a 2- to 3-fold stimulation of net cholesterol efflux compared with control HDL-2 in LXR-activated macrophages, due primarily to an increase in lecithin:cholesterol acyltransferase–mediated (LCAT-mediated) cholesteryl ester formation in media. Genetic knockdown or overexpression of ABCG1 showed that increased cholesterol efflux to CETP-D HDL was ABCG1 dependent. LCAT and apoE contents of CETP-D HDL-2 were markedly increased compared with control HDL-2, and increased cholesterol esterification activity resided within the apoE-HDL fraction. Thus, CETP-D HDL has enhanced ability to promote cholesterol efflux from foam cells in an ABCG1-dependent pathway due to an increased content of LCAT and apoE.

Authors

Fumihiko Matsuura, Nan Wang, Wengen Chen, Xian-Cheng Jiang, Alan R. Tall

×

Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation
Xueliang Du, Diane Edelstein, Silvana Obici, Ninon Higham, Ming-Hui Zou,, Michael Brownlee
Xueliang Du, Diane Edelstein, Silvana Obici, Ninon Higham, Ming-Hui Zou,, Michael Brownlee
View: Text | PDF

Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

  • Text
  • PDF
Abstract

Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models — insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet–induced insulin-resistant mice — inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance.

Authors

Xueliang Du, Diane Edelstein, Silvana Obici, Ninon Higham, Ming-Hui Zou,, Michael Brownlee

×

GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis
John J. Lepore, Patricia A. Mericko, Lan Cheng, Min Min Lu, Edward E. Morrisey, Michael S. Parmacek
John J. Lepore, Patricia A. Mericko, Lan Cheng, Min Min Lu, Edward E. Morrisey, Michael S. Parmacek
View: Text | PDF

GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis

  • Text
  • PDF
Abstract

GATA transcription factors play critical roles in restricting cell lineage differentiation during development. Here, we show that conditional inactivation of GATA-6 in VSMCs results in perinatal mortality from a spectrum of cardiovascular defects, including interrupted aortic arch and persistent truncus arteriosus. Inactivation of GATA-6 in neural crest recapitulates these abnormalities, demonstrating a cell-autonomous requirement for GATA-6 in neural crest–derived SMCs. Surprisingly, the observed defects do not result from impaired SMC differentiation but rather are associated with severely attenuated expression of semaphorin 3C, a signaling molecule critical for both neuronal and vascular patterning. Thus, the primary function of GATA-6 during cardiovascular development is to regulate morphogenetic patterning of the cardiac outflow tract and aortic arch. These findings provide new insights into the conserved functions of the GATA-4, -5, and -6 subfamily members and identify GATA-6 and GATA-6–regulated genes as candidates involved in the pathogenesis of congenital heart disease.

Authors

John J. Lepore, Patricia A. Mericko, Lan Cheng, Min Min Lu, Edward E. Morrisey, Michael S. Parmacek

×
  • ← Previous
  • 1
  • 2
  • …
  • 36
  • 37
  • 38
  • …
  • 49
  • 50
  • Next →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Video AbstractsCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts