Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

  • 486 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 36
  • 37
  • 38
  • …
  • 48
  • 49
  • Next →
Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function
Yan Cheng, … , Colin D. Funk, Garret A. FitzGerald
Yan Cheng, … , Colin D. Funk, Garret A. FitzGerald
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1391-1399. https://doi.org/10.1172/JCI27540.
View: Text | PDF

Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function

  • Text
  • PDF
Abstract

We investigated the mechanisms by which inhibitors of prostaglandin G/H synthase-2 (PGHS-2; known colloquially as COX-2) increase the incidence of myocardial infarction and stroke. These inhibitors are believed to exert both their beneficial and their adverse effects by suppression of PGHS-2–derived prostacyclin (PGI2) and PGE2. Therefore, the challenge remains to identify a mechanism whereby PGI2 and PGE2 expression can be suppressed while avoiding adverse cardiovascular events. Here, selective inhibition, knockout, or mutation of PGHS-2, or deletion of the receptor for PGHS-2–derived PGI2, was shown to accelerate thrombogenesis and elevate blood pressure in mice. These responses were attenuated by COX-1 knock down, which mimics the beneficial effects of low-dose aspirin. PGE2 biosynthesis is catalyzed by the coordinate actions of COX enzymes and microsomal PGE synthase-1 (mPGES-1). We show that deletion of mPGES-1 depressed PGE2 expression, augmented PGI2 expression, and had no effect on thromboxane biosynthesis in vivo. Most importantly, mPGES-1 deletion affected neither thrombogenesis nor blood pressure. These results suggest that inhibitors of mPGES-1 may retain their antiinflammatory efficacy by depressing PGE2, while avoiding the adverse cardiovascular consequences associated with PGHS-2–mediated PGI2 suppression.

Authors

Yan Cheng, Miao Wang, Ying Yu, John Lawson, Colin D. Funk, Garret A. FitzGerald

×

HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway
Fumihiko Matsuura, … , Xian-Cheng Jiang, Alan R. Tall
Fumihiko Matsuura, … , Xian-Cheng Jiang, Alan R. Tall
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1435-1442. https://doi.org/10.1172/JCI27602.
View: Text | PDF

HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway

  • Text
  • PDF
Abstract

Genetic deficiency or inhibition of cholesteryl ester transfer protein (CETP) leads to a marked increase in plasma levels of large HDL-2 particles. However, there is concern that such particles may be dysfunctional in terms of their ability to promote cholesterol efflux from macrophages. Recently, the ATP-binding cassette transporter ABCG1, a macrophage liver X receptor (LXR) target, has been shown to stimulate cholesterol efflux to HDL. We have assessed the ability of HDL from subjects with homozygous deficiency of CETP (CETP-D) to promote cholesterol efflux from macrophages and have evaluated the role of ABCG1 and other factors in this process. CETP-D HDL-2 caused a 2- to 3-fold stimulation of net cholesterol efflux compared with control HDL-2 in LXR-activated macrophages, due primarily to an increase in lecithin:cholesterol acyltransferase–mediated (LCAT-mediated) cholesteryl ester formation in media. Genetic knockdown or overexpression of ABCG1 showed that increased cholesterol efflux to CETP-D HDL was ABCG1 dependent. LCAT and apoE contents of CETP-D HDL-2 were markedly increased compared with control HDL-2, and increased cholesterol esterification activity resided within the apoE-HDL fraction. Thus, CETP-D HDL has enhanced ability to promote cholesterol efflux from foam cells in an ABCG1-dependent pathway due to an increased content of LCAT and apoE.

Authors

Fumihiko Matsuura, Nan Wang, Wengen Chen, Xian-Cheng Jiang, Alan R. Tall

×

Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation
Xueliang Du, … , Ming-Hui Zou,, Michael Brownlee
Xueliang Du, … , Ming-Hui Zou,, Michael Brownlee
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):1071-1080. https://doi.org/10.1172/JCI23354.
View: Text | PDF

Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

  • Text
  • PDF
Abstract

Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models — insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet–induced insulin-resistant mice — inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance.

Authors

Xueliang Du, Diane Edelstein, Silvana Obici, Ninon Higham, Ming-Hui Zou,, Michael Brownlee

×

GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis
John J. Lepore, … , Edward E. Morrisey, Michael S. Parmacek
John J. Lepore, … , Edward E. Morrisey, Michael S. Parmacek
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):929-939. https://doi.org/10.1172/JCI27363.
View: Text | PDF

GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis

  • Text
  • PDF
Abstract

GATA transcription factors play critical roles in restricting cell lineage differentiation during development. Here, we show that conditional inactivation of GATA-6 in VSMCs results in perinatal mortality from a spectrum of cardiovascular defects, including interrupted aortic arch and persistent truncus arteriosus. Inactivation of GATA-6 in neural crest recapitulates these abnormalities, demonstrating a cell-autonomous requirement for GATA-6 in neural crest–derived SMCs. Surprisingly, the observed defects do not result from impaired SMC differentiation but rather are associated with severely attenuated expression of semaphorin 3C, a signaling molecule critical for both neuronal and vascular patterning. Thus, the primary function of GATA-6 during cardiovascular development is to regulate morphogenetic patterning of the cardiac outflow tract and aortic arch. These findings provide new insights into the conserved functions of the GATA-4, -5, and -6 subfamily members and identify GATA-6 and GATA-6–regulated genes as candidates involved in the pathogenesis of congenital heart disease.

Authors

John J. Lepore, Patricia A. Mericko, Lan Cheng, Min Min Lu, Edward E. Morrisey, Michael S. Parmacek

×

α1-Adrenergic receptors prevent a maladaptive cardiac response to pressure overload
Timothy D. O’Connell, … , William Grossman, Paul C. Simpson
Timothy D. O’Connell, … , William Grossman, Paul C. Simpson
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):1005-1015. https://doi.org/10.1172/JCI22811.
View: Text | PDF

α1-Adrenergic receptors prevent a maladaptive cardiac response to pressure overload

  • Text
  • PDF
Abstract

An α1-adrenergic receptor (α1-AR) antagonist increased heart failure in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), but it is unknown whether this adverse result was due to α1-AR inhibition or a nonspecific drug effect. We studied cardiac pressure overload in mice with double KO of the 2 main α1-AR subtypes in the heart, α1A (Adra1a) and α1B (Adra1b). At 2 weeks after transverse aortic constriction (TAC), KO mouse survival was only 60% of WT, and surviving KO mice had lower ejection fractions and larger end-diastolic volumes than WT mice. Mechanistically, final heart weight and myocyte cross-sectional area were the same after TAC in KO and WT mice. However, KO hearts after TAC had increased interstitial fibrosis, increased apoptosis, and failed induction of the fetal hypertrophic genes. Before TAC, isolated KO myocytes were more susceptible to apoptosis after oxidative and β-AR stimulation, and β-ARs were desensitized. Thus, α1-AR deletion worsens dilated cardiomyopathy after pressure overload, by multiple mechanisms, indicating that α1-signaling is required for cardiac adaptation. These results suggest that the adverse cardiac effects of α1-antagonists in clinical trials are due to loss of α1-signaling in myocytes, emphasizing concern about clinical use of α1-antagonists, and point to a revised perspective on sympathetic activation in heart failure.

Authors

Timothy D. O’Connell, Philip M. Swigart, M.C. Rodrigo, Shinji Ishizaka, Shuji Joho, Lynne Turnbull, Laurence H. Tecott, Anthony J. Baker, Elyse Foster, William Grossman, Paul C. Simpson

×

Cardiac mast cell–derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion
Christina J. Mackins, … , Randi B. Silver, Roberto Levi
Christina J. Mackins, … , Randi B. Silver, Roberto Levi
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):1063-1070. https://doi.org/10.1172/JCI25713.
View: Text | PDF

Cardiac mast cell–derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion

  • Text
  • PDF
Abstract

Having identified renin in cardiac mast cells, we assessed whether its release leads to cardiac dysfunction. In Langendorff-perfused guinea pig hearts, mast cell degranulation with compound 48/80 released Ang I–forming activity. This activity was blocked by the selective renin inhibitor BILA2157, indicating that renin was responsible for Ang I formation. Local generation of cardiac Ang II from mast cell–derived renin also elicited norepinephrine release from isolated sympathetic nerve terminals. This action was mediated by Ang II-type 1 (AT1) receptors. In 2 models of ischemia/reperfusion using Langendorff-perfused guinea pig and mouse hearts, a significant coronary spillover of renin and norepinephrine was observed. In both models, this was accompanied by ventricular fibrillation. Mast cell stabilization with cromolyn or lodoxamide markedly reduced active renin overflow and attenuated both norepinephrine release and arrhythmias. Similar cardioprotection was observed in guinea pig hearts treated with BILA2157 or the AT1 receptor antagonist EXP3174. Renin overflow and arrhythmias in ischemia/reperfusion were much less prominent in hearts of mast cell–deficient mice than in control hearts. Thus, mast cell–derived renin is pivotal for activating a cardiac renin-angiotensin system leading to excessive norepinephrine release in ischemia/reperfusion. Mast cell–derived renin may be a useful therapeutic target for hyperadrenergic dysfunctions, such as arrhythmias, sudden cardiac death, myocardial ischemia, and congestive heart failure.

Authors

Christina J. Mackins, Seiichiro Kano, Nahid Seyedi, Ulrich Schäfer, Alicia C. Reid, Takuji Machida, Randi B. Silver, Roberto Levi

×

Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling
Xu Wu, … , Joan Heller Brown, Donald M. Bers
Xu Wu, … , Joan Heller Brown, Donald M. Bers
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):675-682. https://doi.org/10.1172/JCI27374.
View: Text | PDF

Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling

  • Text
  • PDF
Abstract

Previous work showed that calmodulin (CaM) and Ca2+-CaM–dependent protein kinase II (CaMKII) are somehow involved in cardiac hypertrophic signaling, that inositol 1,4,5-trisphosphate receptors (InsP3Rs) in ventricular myocytes are mainly in the nuclear envelope, where they associate with CaMKII, and that class II histone deacetylases (e.g., HDAC5) suppress hypertrophic gene transcription. Furthermore, HDAC phosphorylation in response to neurohumoral stimuli that induce hypertrophy, such as endothelin-1 (ET-1), activates HDAC nuclear export, thereby regulating cardiac myocyte transcription. Here we demonstrate a detailed mechanistic convergence of these 3 issues in adult ventricular myocytes. We show that ET-1, which activates plasmalemmal G protein–coupled receptors and InsP3 production, elicits local nuclear envelope Ca2+ release via InsP3R. This local Ca2+ release activates nuclear CaMKII, which triggers HDAC5 phosphorylation and nuclear export (derepressing transcription). Remarkably, this Ca2+-dependent pathway cannot be activated by the global Ca2+ transients that cause contraction at each heartbeat. This novel local Ca2+ signaling in excitation-transcription coupling is analogous to but separate (and insulated) from that involved in excitation-contraction coupling. Thus, myocytes can distinguish simultaneous local and global Ca2+ signals involved in contractile activation from those targeting gene expression.

Authors

Xu Wu, Tong Zhang, Julie Bossuyt, Xiaodong Li, Timothy A. McKinsey, John R. Dedman, Eric N. Olson, Ju Chen, Joan Heller Brown, Donald M. Bers

×

A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y
Leigh D. Plant, … , Rick A. Kittles, Steve A.N. Goldstein
Leigh D. Plant, … , Rick A. Kittles, Steve A.N. Goldstein
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):430-435. https://doi.org/10.1172/JCI25618.
View: Text | PDF

A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y

  • Text
  • PDF
Abstract

Thousands die each year from sudden infant death syndrome (SIDS). Neither the cause nor basis for varied prevalence in different populations is understood. While 2 cases have been associated with mutations in type Vα, cardiac voltage-gated sodium channels (SCN5A), the “Back to Sleep” campaign has decreased SIDS prevalence, consistent with a role for environmental influences in disease pathogenesis. Here we studied SCN5A in African Americans. Three of 133 SIDS cases were homozygous for the variant S1103Y. Among controls, 120 of 1,056 were carriers of the heterozygous genotype, which was previously associated with increased risk for arrhythmia in adults. This suggests that infants with 2 copies of S1103Y have a 24-fold increased risk for SIDS. Variant Y1103 channels were found to operate normally under baseline conditions in vitro. As risk factors for SIDS include apnea and respiratory acidosis, Y1103 and wild-type channels were subjected to lowered intracellular pH. Only Y1103 channels gained abnormal function, demonstrating late reopenings suppressible by the drug mexiletine. The variant appeared to confer susceptibility to acidosis-induced arrhythmia, a gene-environment interaction. Overall, homozygous and rare heterozygous SCN5A missense variants were found in approximately 5% of cases. If our findings are replicated, prospective genetic testing of SIDS cases and screening with counseling for at-risk families warrant consideration.

Authors

Leigh D. Plant, Peter N. Bowers, Qianyong Liu, Thomas Morgan, Tingting Zhang, Matthew W. State, Weidong Chen, Rick A. Kittles, Steve A.N. Goldstein

×

PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury
Tomohisa Nagoshi, … , Hunter C. Champion, Anthony Rosenzweig
Tomohisa Nagoshi, … , Hunter C. Champion, Anthony Rosenzweig
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):548-548. https://doi.org/10.1172/JCI23073C1.
View: Text | PDF | Amended Article

PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Authors

Tomohisa Nagoshi, Takashi Matsui, Takuma Aoyama, Annarosa Leri, Piero Anversa, Ling Li, Wataru Ogawa, Federica del Monte, Judith K. Gwathmey, Luanda Grazette, Brian Hemmings, David A. Kass, Hunter C. Champion, Anthony Rosenzweig

×

Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice
Xu Peng, … , Hua Gu, Jun-Lin Guan
Xu Peng, … , Hua Gu, Jun-Lin Guan
Published January 4, 2006
Citation Information: J Clin Invest. 2006;116(1):217-227. https://doi.org/10.1172/JCI24497.
View: Text | PDF

Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice

  • Text
  • PDF
Abstract

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a major role in integrin signaling pathways. Although cardiovascular defects were observed in FAK total KO mice, the embryonic lethality prevented investigation of FAK function in the hearts of adult animals. To circumvent these problems, we created mice in which FAK is selectively inactivated in cardiomyocytes (CFKO mice). We found that CFKO mice develop eccentric cardiac hypertrophy (normal LV wall thickness and increased left chamber dimension) upon stimulation with angiotensin II or pressure overload by transverse aortic constriction as measured by echocardiography. We also found increased heart/body weight ratios, elevated markers of cardiac hypertrophy, multifocal interstitial fibrosis, and increased collagen I and VI expression in CFKO mice compared with control littermates. Spontaneous cardiac chamber dilation and increased expression of hypertrophy markers were found in the older CFKO mice. Analysis of cardiomyocytes isolated from CFKO mice showed increased length but not width. The myocardium of CFKO mice exhibited disorganized myofibrils with increased nonmyofibrillar space filled with swelled mitochondria. Last, decreased tyrosine phosphorylation of FAK substrates p130Cas and paxillin were observed in CFKO mice compared with the control littermates. Together, these results provide strong evidence for a role of FAK in the regulation of heart hypertrophy in vivo.

Authors

Xu Peng, Marc S. Kraus, Huijun Wei, Tang-Long Shen, Romain Pariaut, Ana Alcaraz, Guangju Ji, Lihong Cheng, Qinglin Yang, Michael I. Kotlikoff, Ju Chen, Kenneth Chien, Hua Gu, Jun-Lin Guan

×
  • ← Previous
  • 1
  • 2
  • …
  • 36
  • 37
  • 38
  • …
  • 48
  • 49
  • Next →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Video AbstractsCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts