Although the role of estradiol in maintaining bone mass is well established, the relative contributions of the estradiol receptors ERα and ERβ and of the androgen receptor (AR) remain controversial. To determine the role of ERα-mediated, ERβ-mediated, and non–ER-mediated mechanisms in maintaining bone mass, gonadectomy and estradiol treatment were studied in ER-knockout mice. Estradiol treatment of ovariectomized ERαβ–/– mice failed to prevent bone loss, precluding significant effects of estradiol on bone through non–ER-signaling pathways. In contrast, estradiol prevented ovariectomy-induced bone loss in ERβ–/– mice, as in WT males and females, indicating that ERα is the major mediator of estradiol effects in bone. No response of bone to estradiol was detected in orchidectomized ERα–/– mice, suggesting estradiol cannot protect bone mass via the AR in vivo. In contrast to female ERαβ–/– and male ERα–/– mice, female ERα–/– mice were partially protected against ovariectomy-induced bone loss by estradiol, confirming that ERβ mediates estradiol effects in bone, but only in females and with a lower efficacy than ERα. We conclude that ERα is the main effector of estradiol’s protective function in bone in both male and female mice, and that, in its absence, AR is not sufficient to mediate this response.
Natalie A. Sims, Philippe Clément-Lacroix, Dominique Minet, Caroline Fraslon-Vanhulle, Martine Gaillard-Kelly, Michèle Resche-Rigon, Roland Baron
To understand the role of the calcium-sensing receptor (CasR) in the skeleton, we used a genetic approach to ablate parathyroid glands and remove the confounding effects of elevated parathyroid hormone (PTH) in CasR-deficient mice. CasR deficiency was transferred onto the glial cells missing 2–deficient (Gcm2-deficient) background by intercrossing CasR- and Gcm2-deficient mice. Superimposed Gcm2 deficiency rescued the perinatal lethality in CasR-deficient mice in association with ablation of the parathyroid glands and correction of the severe hyperparathyroidism. In addition, the double homozygous CasR- and Gcm2-deficient mice demonstrated healing of the abnormal mineralization of cartilage and bone associated with CasR deficiency, indicating that rickets and osteomalacia in CasR-deficient mice are not due to an independent function of CasR in bone and cartilage but to the effect of severe hyperparathyroidism in the neonate. Analysis of the skeleton of 6-week-old homozygous CasR- and Gcm2-deficient mice also failed to identify any essential, nonredundant role for CasR in regulating chondrogenesis or osteogenesis, but further studies are needed to establish the function of CasR in the skeleton. In contrast, concomitant Gcm2 and CasR deficiency failed to rescue the hypocalciuria in CasR-deficient mice, consistent with direct regulation of urinary calcium excretion by CasR in the kidney. Double Gcm2- and CasR-deficient mice provide an important model for evaluating the extraparathyroid functions of CasR.
Qisheng Tu, Min Pi, Gerard Karsenty, Leigh Simpson, Shiguang Liu, L. Darryl Quarles
Psoriatic arthritis (PsA) is an inflammatory joint disease characterized by extensive bone resorption. The mechanisms underlying this matrix loss have not been elucidated. We report here that blood samples from PsA patients, particularly those with bone erosions visible on plain radiographs, exhibit a marked increase in osteoclast precursors (OCPs) compared with those from healthy controls. Moreover, PsA PBMCs readily formed osteoclasts in vitro without exogenous receptor activator of NF-κB ligand (RANKL) or MCSF. Both osteoprotegerin (OPG) and anti-TNF antibodies inhibited osteoclast formation. Additionally, cultured PsA PBMCs spontaneously secreted higher levels of TNF-α than did healthy controls. In vivo, OCP frequency declined substantially in PsA patients following treatment with anti-TNF agents. Immunohistochemical analysis of subchondral bone and synovium revealed RANK-positive perivascular mononuclear cells and osteoclasts in PsA specimens. RANKL expression was dramatically upregulated in the synovial lining layer, while OPG immunostaining was restricted to the endothelium. These results suggest a model for understanding the pathogenesis of aggressive bone erosions in PsA. OCPs arise from TNF-α–activated PBMCs that migrate to the inflamed synovium and subchondral bone, where they are exposed to unopposed RANKL and TNF-α. This leads to osteoclastogenesis at the erosion front and in subchondral bone, resulting in a bidirectional assault on psoriatic bone.
Christopher T. Ritchlin, Sally A. Haas-Smith, Ping Li, David G. Hicks, Edward M. Schwarz
β3 integrin–null osteoclasts are dysfunctional, but their numbers are increased in vivo. In vitro, however, the number of β3–/– osteoclasts is reduced because of arrested differentiation. This paradox suggests cytokine regulation of β3–/– osteoclastogenesis differs in vitro and in vivo. In vitro, additional MCSF, but not receptor activator of NF-κB ligand (RANKL), completely rescues β3–/– osteoclastogenesis. Similarly, activation of extracellular signal-regulated kinases (ERKs) and expression of c-Fos, both essential for osteoclastogenesis, are attenuated in β3–/– preosteoclasts, but completely restored by additional MCSF. In fact, circulating and bone marrow cell membrane-bound MCSFs are enhanced in β3–/– mice, correlating with the increase in the osteoclast number. To identify components of the MCSF receptor that is critical for osteoclastogenesis in β3–/– cells, we retrovirally transduced authentic osteoclast precursors with chimeric c-Fms constructs containing various cytoplasmic domain mutations. Normalization of osteoclastogenesis and ERK activation, in β3–/– cells, uniquely requires c-Fms tyrosine 697. Finally, like high-dose MCSF, overexpression of c-Fos normalizes the number of β3–/– osteoclasts in vitro, but not their ability to resorb dentin. Thus, while c-Fms and αvβ3 collaborate in the osteoclastogenic process via shared activation of the ERK/c-Fos signaling pathway, the integrin is essential for matrix degradation.
Roberta Faccio, Sunao Takeshita, Alberta Zallone, F. Patrick Ross, Steven L. Teitelbaum
Research Article
M. Neale Weitzmann, Cristiana Roggia, Gianluca Toraldo, Louise Weitzmann, Roberto Pacifici
Research Article
Frank Rauch, Rose Travers, Horacio Plotkin, Francis H. Glorieux