HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
Michael K.P. Liu, Natalie Hawkins, Adam J. Ritchie, Vitaly V. Ganusov, Victoria Whale, Simon Brackenridge, Hui Li, Jeffrey W. Pavlicek, Fangping Cai, Melissa Rose-Abrahams, Florette Treurnicht, Peter Hraber, Catherine Riou, Clive Gray, Guido Ferrari, Rachel Tanner, Li-Hua Ping, Jeffrey A. Anderson, Ronald Swanstrom, CHAVI Core B, Myron Cohen, Salim S. Abdool Karim, Barton Haynes, Persephone Borrow, Alan S. Perelson, George M. Shaw, Beatrice H. Hahn, Carolyn Williamson, Bette T. Korber, Feng Gao, Steve Self, Andrew McMichael, Nilu Goonetilleke
Acute HIV-1 infection results in dysregulated immunity, which contributes to poor control of viral infection. DCs are key regulators of both adaptive and innate immune responses needed for controlling HIV-1, and we surmised that factors elicited during acute HIV-1 infection might impede DC function. We derived immature DCs from healthy donor peripheral blood monocytes and treated them with plasma from uninfected control donors and donors with acute HIV-1 infections. We found that the plasma from patients with HIV specifically inhibited DC function. This suppression was mediated by elevated apoptotic microparticles derived from dying cells during acute HIV-1 infection. Apoptotic microparticles bound to and inhibited DCs through the hyaluronate receptor CD44. These data suggest that targeting this CD44-mediated inhibition by apoptotic microparticles could be a novel strategy to potentiate DC activation of HIV-specific immunity.
Davor Frleta, Carolyn E. Ochoa, Holger B. Kramer, Shaukat Ali Khan, Andrea R. Stacey, Persephone Borrow, Benedikt M. Kessler, Barton F. Haynes, Nina Bhardwaj
The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1–infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)–specific CD8+ T cells obtained from HIV-1–infected human subjects responded to HIV-1–infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)–specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)–specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)–targeted HIV-1 vaccines and immunotherapeutics.
R. Brad Jones, Keith E. Garrison, Shariq Mujib, Vesna Mihajlovic, Nasra Aidarus, Diana V. Hunter, Eric Martin, Vivek M. John, Wei Zhan, Nabil F. Faruk, Gabor Gyenes, Neil C. Sheppard, Ingrid M. Priumboom-Brees, David A. Goodwin, Lianchun Chen, Melanie Rieger, Sophie Muscat-King, Peter T. Loudon, Cole Stanley, Sara J. Holditch, Jessica C. Wong, Kiera Clayton, Erick Duan, Haihan Song, Yang Xu, Devi SenGupta, Ravi Tandon, Jonah B. Sacha, Mark A. Brockman, Erika Benko, Colin Kovacs, Douglas F. Nixon, Mario A. Ostrowski
Depletion of CD4+ T cells from the gut occurs rapidly during acute HIV-1 infection. This has been linked to systemic inflammation and disease progression as a result of translocation of microbial products from the gut lumen into the bloodstream. Combined antiretroviral therapy (cART) substantially restores CD4+ T cell numbers in peripheral blood, but the gut compartment remains largely depleted of such cells for poorly understood reasons. Here, we show that a lack of recruitment of CD4+ T cells to the gut could be involved in the incomplete mucosal immune reconstitution of cART-treated HIV-infected individuals. We investigated the trafficking of CD4+ T cells expressing the gut-homing receptors CCR9 and integrin α4β7 and found that many of these T cells remained in the circulation rather than repopulating the mucosa of the small intestine. This is likely because expression of the CCR9 ligand CCL25 was lower in the small intestine of HIV-infected individuals. The defective gut homing of CCR9+β7+ CD4+ T cells — a population that we found included most gut-homing Th17 cells, which have a critical role in mucosal immune defense — correlated with high plasma concentrations of markers of mucosal damage, microbial translocation, and systemic T cell activation. Our results thus describe alterations in CD4+ T cell homing to the gut that could prevent efficient mucosal immune reconstitution in HIV-infected individuals despite effective cART.
Maud Mavigner, Michelle Cazabat, Martine Dubois, Fatima-Ezzahra L’Faqihi, Mary Requena, Christophe Pasquier, Pascale Klopp, Jacques Amar, Laurent Alric, Karl Barange, Jean-Pierre Vinel, Bruno Marchou, Patrice Massip, Jacques Izopet, Pierre Delobel
CD4+ T cells play a central role in the immunopathogenesis of HIV/AIDS, and their depletion during chronic HIV infection is a hallmark of disease progression. However, the relative contribution of CD4+ T cells as mediators of antiviral immune responses and targets for virus replication is still unclear. Here, we have generated data in SIV-infected rhesus macaques (RMs) that suggest that CD4+ T cells are essential in establishing control of virus replication during acute infection. To directly assess the role of CD4+ T cells during primary SIV infection, we in vivo depleted these cells from RMs prior to infecting the primates with a pathogenic strain of SIV. Compared with undepleted animals, CD4+ lymphocyte–depleted RMs showed a similar peak of viremia, but did not manifest any post-peak decline of virus replication despite CD8+ T cell– and B cell–mediated SIV-specific immune responses comparable to those observed in control animals. Interestingly, depleted animals displayed rapid disease progression, which was associated with increased virus replication in non-T cells as well as the emergence of CD4-independent SIV-envelopes. Our results suggest that the antiviral CD4+ T cell response may play an important role in limiting SIV replication, which has implications for the design of HIV vaccines.
Alexandra M. Ortiz, Nichole R. Klatt, Bing Li, Yanjie Yi, Brian Tabb, Xing Pei Hao, Lawrence Sternberg, Benton Lawson, Paul M. Carnathan, Elizabeth M. Cramer, Jessica C. Engram, Dawn M. Little, Elena Ryzhova, Francisco Gonzalez-Scarano, Mirko Paiardini, Aftab A. Ansari, Sarah Ratcliffe, James G. Else, Jason M. Brenchley, Ronald G. Collman, Jacob D. Estes, Cynthia A. Derdeyn, Guido Silvestri
Loss of memory B cells occurs from the onset of HIV-1 infection and persists into the chronic stages of infection. Lack of survival of these cells, even in subjects being treated, could primarily be the consequence of an altered local microenvironment induced by HIV infection. In this study we showed that memory B cell survival was significantly decreased in aviremic successfully treated (ST) subjects compared with subjects who control viral load as a result of natural immunity (elite controller [EC]) or with uninfected control (HIV–) subjects. The lower survival levels observed in memory B cells from ST subjects were the result of disrupted IL-2 signaling that led to increased transcriptional activity of Foxo3a and increased expression of its proapoptotic target TRAIL. Notably, memory B cell survival in ST subjects was significantly enhanced by the addition of exogenous IL-2 in a Foxo3a-dependent manner. We further showed that Foxo3a silencing by siRNA resulted in decreased expression of TRAIL and apoptosis levels in memory B cells from ST subjects. Our results thus establish a direct role for Foxo3a/TRAIL signaling in the persistence of memory B cells and provide a mechanism for the reduced survival of memory B cells during HIV infection. This knowledge could be exploited for the development of therapeutic and preventative HIV vaccines.
Julien van Grevenynghe, Rafael A. Cubas, Alessandra Noto, Sandrina DaFonseca, Zhong He, Yoav Peretz, Abdelali Filali-Mouhim, Franck P. Dupuy, Francesco A. Procopio, Nicolas Chomont, Robert S. Balderas, Elias A. Said, Mohamed-Rachid Boulassel, Cecile L. Tremblay, Jean-Pierre Routy, Rafick-Pierre Sékaly, Elias K. Haddad
Chronic immune activation in HIV-infected individuals leads to accumulation of exhausted tissue-like memory B cells. Exhausted lymphocytes display increased expression of multiple inhibitory receptors, which may contribute to the inefficiency of HIV-specific antibody responses. Here, we show that downregulation of B cell inhibitory receptors in primary human B cells led to increased tissue-like memory B cell proliferation and responsiveness against HIV. In human B cells, siRNA knockdown of 9 known and putative B cell inhibitory receptors led to enhanced B cell receptor–mediated (BCR-mediated) proliferation of tissue-like memory but not other B cell subpopulations. The strongest effects were observed with the putative inhibitory receptors Fc receptor–like–4 (FCRL4) and sialic acid–binding Ig-like lectin 6 (Siglec-6). Inhibitory receptor downregulation also led to increased levels of HIV-specific antibody-secreting cells and B cell–associated chemokines and cytokines. The absence of known ligands for FCRL4 and Siglec-6 suggests these receptors may regulate BCR signaling through their own constitutive or tonic signaling. Furthermore, the extent of FCLR4 knockdown effects on BCR-mediated proliferation varied depending on the costimulatory ligand, suggesting that inhibitory receptors may engage specific pathways in inhibiting B cell proliferation. These findings on HIV-associated B cell exhaustion define potential targets for reversing the deleterious effect of inhibitory receptors on immune responses against persistent viral infections.
Lela Kardava, Susan Moir, Wei Wang, Jason Ho, Clarisa M. Buckner, Jacqueline G. Posada, Marie A. O’Shea, Gregg Roby, Jenny Chen, Hae Won Sohn, Tae-Wook Chun, Susan K. Pierce, Anthony S. Fauci
The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission.
Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4+ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1–induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4+ and CD8+ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4+ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Margalida Rotger, Judith Dalmau, Andri Rauch, Paul McLaren, Steve Bosinger, Raquel Martinez, Netanya G. Sandler, Annelys Roque, Julia Liebner, Manuel Battegay, Enos Bernasconi, Patrick Descombes, Itziar Erkizia, Jacques Fellay, Bernard Hirschel, Jose M. Miró, Eduard Palou, Matthias Hoffmann, Marta Massanella, Julià Blanco, Matthew Woods, Huldrych F. Günthard, Paul de Bakker, Daniel C. Douek, Guido Silvestri, Javier Martinez-Picado, Amalio Telenti
Elite controllers represent a unique group of HIV-1–infected persons with undetectable HIV-1 replication in the absence of antiretroviral therapy. However, the mechanisms contributing to effective viral immune defense in these patients remain unclear. Here, we show that compared with HIV-1 progressors and HIV-1–negative persons, CD4+ T cells from elite controllers are less susceptible to HIV-1 infection. This partial resistance to HIV-1 infection involved less effective reverse transcription and mRNA transcription from proviral DNA and was associated with strong and selective upregulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). Experimental blockade of p21 in CD4+ T cells from elite controllers resulted in a marked increase of viral reverse transcripts and mRNA production and led to higher enzymatic activities of cyclin-dependent kinase 9 (CDK9), which serves as a transcriptional coactivator of HIV-1 gene expression. This suggests that p21 acts as a barrier against HIV-1 infection in CD4+ T cells from elite controllers by inhibiting a cyclin-dependent kinase required for effective HIV-1 replication. These data demonstrate a mechanism of host resistance to HIV-1 in elite controllers and may open novel perspectives for clinical strategies to prevent or treat HIV-1 infection.
Huabiao Chen, Chun Li, Jinghe Huang, Thai Cung, Katherine Seiss, Jill Beamon, Mary F. Carrington, Lindsay C. Porter, Patrick S. Burke, Yue Yang, Bethany J. Ryan, Ruiwu Liu, Robert H. Weiss, Florencia Pereyra, William D. Cress, Abraham L. Brass, Eric S. Rosenberg, Bruce D. Walker, Xu G. Yu, Mathias Lichterfeld