Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,287 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • …
  • 228
  • 229
  • Next →
Flavin-containing monooxygenase 2 confers cardioprotection in ischemia models through its disulfide-bond catalytic activity
Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao He, Danyang Xiong, Xinyang Hu, Jian'an Wang
Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao He, Danyang Xiong, Xinyang Hu, Jian'an Wang
View: Text | PDF

Flavin-containing monooxygenase 2 confers cardioprotection in ischemia models through its disulfide-bond catalytic activity

  • Text
  • PDF
Abstract

Myocardial infarction (MI) is characterized by massive cardiomyocytes death and cardiac dysfunction, and effective therapies to achieve cardioprotection are sorely needed. Here we reported that flavin containing monooxygenase 2 (FMO2) level was markedly increased in cardiomyocytes both in ex vivo and in vivo models of ischemia injury. Genetic deletion of FMO2 resulted in reduced cardiomyocyte survival and enhanced cardiac dysfunction, whereas cardiomyocyte-specific FMO2 overexpression exerted a protective effect in infarcted rat hearts. Mechanistically, FMO2 inhibited the activation of endoplasmic reticulum (ER) stress-induced apoptotic proteins, including caspase 12 and C/EBP homologous protein (CHOP), by down-regulating unfolded protein response (UPR) pathway. Furthermore, we identified FMO2 as a chaperone that catalyzed disulfide-bond formation in unfolded/misfolded proteins through its GVSG motif. GVSG-mutated FMO2 failed to catalyze disulfide-bond formation and lost its protection against ER stress and cardiomyocyte death. Finally, we demonstrated the protective effect of FMO2 in human induced pluripotent stem cell–derived cardiomyocyte (hiPSC-CM) model. Collectively, this study highlights FMO2 as a key modulator of oxidative protein folding in cardiomyocytes and underscores its therapeutic potential for treating ischemic heart disease.

Authors

Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao He, Danyang Xiong, Xinyang Hu, Jian'an Wang

×

Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer
Brad H. Nelson, et al.
Brad H. Nelson, et al.
View: Text | PDF

Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer

  • Text
  • PDF
Abstract

BACKGROUND. Despite an overall poor prognosis, about 15% of patients with advanced-stage tubo-ovarian high-grade serous carcinoma (HGSC) survive ten or more years after standard treatment. METHODS. We evaluated the tumor microenvironment of this exceptional, understudied group using a large international cohort enriched for long-term survivors (LTS; 10+ years; n = 374) compared to medium-term (MTS; 5–7.99 years; n = 433) and short-term survivors (STS; 2–4.99 years; n = 416). Primary tumor samples were immunostained and scored for intra-epithelial and intra-stromal densities of 10 immune-cell subsets (including T cells, B cells, plasma cells, myeloid cells, PD-1+ cells, and PD-L1+ cells) and epithelial content. RESULTS. Positive associations with LTS compared to STS were seen for 9/10 immune-cell subsets. In particular, the combination of intra-epithelial CD8+ T cells and intra-stromal B cells showed near five-fold increased odds of LTS compared to STS. All of these associations were stronger in tumors with high epithelial content and/or the C4/Differentiated molecular subtype, despite immune-cell densities generally being higher in tumors with low epithelial content and/or the C2/Immunoreactive molecular subtype. CONCLUSIONS. The tumor microenvironment of HGSC long-term survivors is distinguished by the intersection of T and B cell co-infiltration, high epithelial content and C4/Differentiated molecular subtype, features which may inspire new approaches to immunotherapy. FUNDING. Ovarian Cancer Research Program (OCRP) of the Congressionally Directed Medical Research Program (CDMRP), U.S. Department of Defense (DOD); American Cancer Society; BC Cancer Foundation; Canada's Networks of Centres of Excellence; Canadian Cancer Society; Canadian Institutes of Health Research; Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania, Cancer Foundation of Western Australia; Cancer Institute NSW; Cancer Research UK; Deutsche Forschungsgesellschaft; ELAN Funds of the University of Erlangen-Nuremberg; Fred C. and Katherine B. Andersen Foundation; Genome BC; German Cancer Research Center; German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research; Instituto de Salud Carlos III; Mayo Foundation; Minnesota Ovarian Cancer Alliance; Ministerio de Economía y Competitividad; MRC; National Center for Advancing Translational Sciences; National Health and Medical Research Council of Australia (NHMRC); Ovarian Cancer Australia; Peter MacCallum Foundation; Sydney West Translational Cancer Research Centre; Terry Fox Research Institute; The Eve Appeal (The Oak Foundation); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge; University of Pittsburgh School of Medicine; U.S. National Cancer Institute of the National Institutes of Health; VGH & UBC Hospital Foundation; Victorian Cancer Agency.

Authors

Brad H. Nelson, Phineas T. Hamilton, Minh Tung Phung, Katy Milne, Bronwyn Harris, Shelby Thornton, Donald L.I. Stevens, Shreena Kalaria, Karanvir Singh, Céline M. Laumont, Elena Moss, Aliya Alimujiang, Nicola S. Meagher, Adelyn Bolithon, Sian Fereday, Catherine J. Kennedy, Joy Hendley, Dinuka Ariyaratne, Kathryn Alsop, Nadia Traficante, Ellen L. Goode, Anthony N. Karnezis, Hui Shen, Jean Richardson, Cindy McKinnon Deurloo, Anne Chase, Bronwyn Grout, Jennifer A. Doherty, Holly R. Harris, Kara L. Cushing-Haugen, Michael S. Anglesio, Karolin Heinze, David Huntsman, Aline Talhouk, Gillian E. Hanley, Jennifer Alsop, Mercedes Jimenez-Linan, Paul D.P. Pharoah, Jessica Boros, Alison H. Brand, Paul R. Harnett, Raghwa Sharma, Jonathan L. Hecht, Naoko Sasamoto, Kathryn L. Terry, Beth Y. Karlan, Jenny Lester, Michael E. Carney, Marc T. Goodman, Brenda Y. Hernandez, Lynne R. Wilkens, Sabine Behrens, Renée Turzanski Fortner, Peter A. Fasching, Christiani Bisinotto, Francisco José Candido dos Reis, Prafull Ghatage, Martin Köbel, Esther Elishaev, Francesmary Modugno, Linda S. Cook, Nhu D. Le, Aleksandra Gentry-Maharaj, Usha Menon, María J. García, Cristina Rodriguez-Antona, Kyo M. Farrington, Linda E. Kelemen, Stefan Kommoss, Annette Staebler, Dale W. Garsed, James D. Brenton, Anna M. Piskorz, David D.L. Bowtell, Anna DeFazio, Susan J. Ramus, Malcolm C. Pike, Celeste Leigh Pearce

×

Non-classical action of Ku70 promotes Treg suppressive function through a FOXP3-dependent mechanism in lung adenocarcinoma
Qianru Huang, Na Tian, Jianfeng Zhang, Shiyang Song, Hao Cheng, Xinnan Liu, Wenle Zhang, Youqiong Ye, Yanhua Du, Xueyu Dai, Rui Liang, Dan Li, Sheng-Ming Dai, Chuan Wang, Zhi Chen, Qianjun Zhou, Bin Li
Qianru Huang, Na Tian, Jianfeng Zhang, Shiyang Song, Hao Cheng, Xinnan Liu, Wenle Zhang, Youqiong Ye, Yanhua Du, Xueyu Dai, Rui Liang, Dan Li, Sheng-Ming Dai, Chuan Wang, Zhi Chen, Qianjun Zhou, Bin Li
View: Text | PDF | Corrigendum

Non-classical action of Ku70 promotes Treg suppressive function through a FOXP3-dependent mechanism in lung adenocarcinoma

  • Text
  • PDF
Abstract

Ku70, a DNA repair protein, binds to the damaged DNA ends and orchestrates the recruitment of other proteins to facilitate repair of DNA double-strand breaks. Besides its essential role in DNA repair, several studies have highlighted non-classical functions of Ku70 in cellular processes. However, its function in immune homeostasis and anti-tumor immunity remains unknown. Here, we discovered a marked association between elevated Ku70 expression and unfavorable prognosis in lung adenocarcinoma, focusing specifically on increased Ku70 levels in tumor-infiltrated Treg cells. Using a lung-colonizing tumor model of in mice with Treg-specific Ku70 deficiency, we demonstrated that deletion of Ku70 in Treg cells led to a stronger anti-tumor response and slower tumor growth due to impaired immune-suppressive capacity of Treg cells. Furthermore, we confirmed that Ku70 played a critical role in sustaining the suppressive function of human Treg cells. We found that Ku70 bound to FOXP3 and occupied FOXP3-bound genomic sites to support its transcriptional activities. These findings not only unveil a non-homologous end joining (NHEJ)-independent role of Ku70 crucial for Treg suppressive function, but also underscore the potential of targeting Ku70 as an effective strategy in cancer therapy, aiming to both restrain cancer cells and enhance pulmonary anti-tumor immunity.

Authors

Qianru Huang, Na Tian, Jianfeng Zhang, Shiyang Song, Hao Cheng, Xinnan Liu, Wenle Zhang, Youqiong Ye, Yanhua Du, Xueyu Dai, Rui Liang, Dan Li, Sheng-Ming Dai, Chuan Wang, Zhi Chen, Qianjun Zhou, Bin Li

×

PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models
Maryna V. Ivanchenko, Daniel M. Hathaway, Eric M. Mulhall, Kevin TA Booth, Mantian Wang, Cole W. Peters, Alex J. Klein, Xinlan Chen, Yaqiao Li, Bence György, David P. Corey
Maryna V. Ivanchenko, Daniel M. Hathaway, Eric M. Mulhall, Kevin TA Booth, Mantian Wang, Cole W. Peters, Alex J. Klein, Xinlan Chen, Yaqiao Li, Bence György, David P. Corey
View: Text | PDF

PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models

  • Text
  • PDF
Abstract

Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.

Authors

Maryna V. Ivanchenko, Daniel M. Hathaway, Eric M. Mulhall, Kevin TA Booth, Mantian Wang, Cole W. Peters, Alex J. Klein, Xinlan Chen, Yaqiao Li, Bence György, David P. Corey

×

FoxO1/Rictor axis induces a non-genetic adaptation to Ibrutinib via Akt activation in chronic lymphocytic leukemia
Laura Ondrisova, Vaclav Seda, Krystof Hlavac, Petra Pavelkova, Eva Hoferkova, Giorgia Chiodin, Lenka Kostalova, Gabriela Mladonicka Pavlasova, Daniel Filip, Josef Vecera, Pedro Faria Zeni, Jan Oppelt, Zuzana Kahounova, Rachel Vichova, Karel Soucek, Anna Panovska, Karla Plevova, Sarka Pospisilova, Martin Simkovic, Filip Vrbacky, Daniel Lysak, Stacey M. Fernandes, Matthew S. Davids, Alba Maiques-Diaz, Stella Charalampopoulou, Jose I. Martin-Subero, Jennifer R. Brown, Michael Doubek, Francesco Forconi, Jiri Mayer, Marek Mraz
Laura Ondrisova, Vaclav Seda, Krystof Hlavac, Petra Pavelkova, Eva Hoferkova, Giorgia Chiodin, Lenka Kostalova, Gabriela Mladonicka Pavlasova, Daniel Filip, Josef Vecera, Pedro Faria Zeni, Jan Oppelt, Zuzana Kahounova, Rachel Vichova, Karel Soucek, Anna Panovska, Karla Plevova, Sarka Pospisilova, Martin Simkovic, Filip Vrbacky, Daniel Lysak, Stacey M. Fernandes, Matthew S. Davids, Alba Maiques-Diaz, Stella Charalampopoulou, Jose I. Martin-Subero, Jennifer R. Brown, Michael Doubek, Francesco Forconi, Jiri Mayer, Marek Mraz
View: Text | PDF

FoxO1/Rictor axis induces a non-genetic adaptation to Ibrutinib via Akt activation in chronic lymphocytic leukemia

  • Text
  • PDF
Abstract

BTK inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL) lasting for several months. It remains unclear whether non-genetic adaptation mechanisms exist, allowing CLL cells’ survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70 % of CLL cases, ibrutinib treatment in vivo increases Akt activity above pre-therapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of FoxO1 transcription factor, which induces expression of Rictor, an assembly protein for mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knock-out or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. FoxO1/Rictor/pAktS473 axis represents an early non-genetic adaptation to BCR inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically, and its inhibition induces CLL cells’ apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T-cell factors (CD40L, IL-4, and IL-21).

Authors

Laura Ondrisova, Vaclav Seda, Krystof Hlavac, Petra Pavelkova, Eva Hoferkova, Giorgia Chiodin, Lenka Kostalova, Gabriela Mladonicka Pavlasova, Daniel Filip, Josef Vecera, Pedro Faria Zeni, Jan Oppelt, Zuzana Kahounova, Rachel Vichova, Karel Soucek, Anna Panovska, Karla Plevova, Sarka Pospisilova, Martin Simkovic, Filip Vrbacky, Daniel Lysak, Stacey M. Fernandes, Matthew S. Davids, Alba Maiques-Diaz, Stella Charalampopoulou, Jose I. Martin-Subero, Jennifer R. Brown, Michael Doubek, Francesco Forconi, Jiri Mayer, Marek Mraz

×

Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants
Saiti S. Halder, Michael J. Rynkiewicz, Lynne Kim, Meaghan Barry, Ahmed G.A. Zied, Lorenzo R. Sewanan, Jonathan A. Kirk, Jeffrey R. Moore, William Lehman, Stuart G. Campbell
Saiti S. Halder, Michael J. Rynkiewicz, Lynne Kim, Meaghan Barry, Ahmed G.A. Zied, Lorenzo R. Sewanan, Jonathan A. Kirk, Jeffrey R. Moore, William Lehman, Stuart G. Campbell
View: Text | PDF

Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants

  • Text
  • PDF
Abstract

Hypertrophic and dilated cardiomyopathies (HCM and DCM, respectively) are inherited disorders that may be caused by mutations to the same sarcomeric protein but have completely different clinical phenotypes. The precise mechanisms by which point mutations within the same gene bring about phenotypic diversity remain unclear. Our objective has been to develop a mechanistic explanation of diverging phenotypes in two TPM1 mutations, E62Q (HCM) and E54K (DCM). Drawing on data from the literature and experiments with stem cell-derived cardiomyocytes expressing the TPM1 mutations of interest, we constructed computational simulations that provide plausible explanations of the distinct muscle contractility caused by each variant. In E62Q, increased calcium sensitivity and hypercontractility was explained most accurately by a reduction in effective molecular stiffness of tropomyosin and alterations in its interactions with the actin thin filament that favor the ‘closed’ regulatory state. By contrast, the E54K mutation appeared to act via long-range allosteric interactions to increase the association rate of the C-terminal troponin I mobile domain to tropomyosin/actin. These mutation-linked molecular events produced diverging alterations in gene expression that can be observed in human engineered heart tissues. Modulators of myosin activity confirmed our proposed mechanisms by rescuing normal contractile behavior in accordance with predictions.

Authors

Saiti S. Halder, Michael J. Rynkiewicz, Lynne Kim, Meaghan Barry, Ahmed G.A. Zied, Lorenzo R. Sewanan, Jonathan A. Kirk, Jeffrey R. Moore, William Lehman, Stuart G. Campbell

×

Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models
Ting-Yu Chang, Yan Yan, Zih-Yao Yu, Moeez Rathore, Nian-Zhe Lee, Hui-Ju Tseng, Li-Hsin Cheng, Wei-Jan Huang, Wei Zhang, Ernest R. Chan, Yulan Qing, Ming-Lun Kang, Rui Wang, Kelvin K. Tsai, John J. Pink, William E. Harte, Stanton L. Gerson, Sung-Bau Lee
Ting-Yu Chang, Yan Yan, Zih-Yao Yu, Moeez Rathore, Nian-Zhe Lee, Hui-Ju Tseng, Li-Hsin Cheng, Wei-Jan Huang, Wei Zhang, Ernest R. Chan, Yulan Qing, Ming-Lun Kang, Rui Wang, Kelvin K. Tsai, John J. Pink, William E. Harte, Stanton L. Gerson, Sung-Bau Lee
View: Text | PDF

Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models

  • Text
  • PDF
Abstract

The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergizes with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.

Authors

Ting-Yu Chang, Yan Yan, Zih-Yao Yu, Moeez Rathore, Nian-Zhe Lee, Hui-Ju Tseng, Li-Hsin Cheng, Wei-Jan Huang, Wei Zhang, Ernest R. Chan, Yulan Qing, Ming-Lun Kang, Rui Wang, Kelvin K. Tsai, John J. Pink, William E. Harte, Stanton L. Gerson, Sung-Bau Lee

×

Attenuated kidney oxidative metabolism in young adults with type 1 diabetes
Ye Ji Choi, et al.
Ye Ji Choi, et al.
View: Text | PDF

Attenuated kidney oxidative metabolism in young adults with type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. In type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism. METHODS. Young adults with T1D (n = 30) and healthy controls (HC, n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA sequencing, and spatial metabolomics to assess this relationship. RESULTS. Participants with T1D had significantly higher glomerular basement membrane thickness compared to HC. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HC, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, GBM, and lower insulin sensitivity and cortical oxidative metabolism. CONCLUSION. These early structural and metabolic changes in T1D kidneys may precede clinical DKD. TRIAL REGISTRATION. ClinicalTrials.gov NCT04074668

Authors

Ye Ji Choi, Gabriel Richard, Guanshi Zhang, Jeffrey B. Hodgin, Dawit S. Demeke, Yingbao Yang, Jennifer A. Schaub, Ian M. Tamayo, Bhupendra K. Gurung, Abhijit S. Naik, Viji Nair, Carissa Birznieks, Alexis MacDonald, Phoom Narongkiatikhun, Susan Gross, Lynette Driscoll, Maureen Flynn, Kalie Tommerdahl, Kristen J. Nadeau, Viral N. Shah, Tim Vigers, Janet K. Snell-Bergeon, Jessica Kendrick, Daniel H. van Raalte, Lu-Ping Li, Pottumarthi Prasad, Patricia Ladd, Bennett B. Chin, David Z. Cherney, Phillip J. McCown, Fadhl Alakwaa, Edgar A. Otto, Frank C. Brosius, Pierre Jean Saulnier, Victor G. Puelles, Jesse A. Goodrich, Kelly Street, Manjeri A. Venkatachalam, Aaron Ruiz, Ian H. de Boer, Robert G. Nelson, Laura Pyle, Denis P. Blondin, Kumar Sharma, Matthias Kretzler, Petter Bjornstad

×

Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer
Ru M. Wen, Jessica C. Stark, G. Edward W. Marti, Zenghua Fan, Aram Lyu, Fernando Jose Garcia Marques, Xiangyue Zhang, Nicholas M. Riley, Sarah M. Totten, Abel Bermudez, Rosalie Nolley, Hongjuan Zhao, Lawrence Fong, Edgar G. Engleman, Sharon J. Pitteri, Carolyn R. Bertozzi, James D. Brooks
Ru M. Wen, Jessica C. Stark, G. Edward W. Marti, Zenghua Fan, Aram Lyu, Fernando Jose Garcia Marques, Xiangyue Zhang, Nicholas M. Riley, Sarah M. Totten, Abel Bermudez, Rosalie Nolley, Hongjuan Zhao, Lawrence Fong, Edgar G. Engleman, Sharon J. Pitteri, Carolyn R. Bertozzi, James D. Brooks
View: Text | PDF

Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer

  • Text
  • PDF
Abstract

Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate immune responses and function. Siglec-7 and Siglec-9 contribute to immune evasion by interacting with their ligands. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in prostate cancer patients, and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglecs-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglecs-7 and -9 as potential therapeutic targets, including CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.

Authors

Ru M. Wen, Jessica C. Stark, G. Edward W. Marti, Zenghua Fan, Aram Lyu, Fernando Jose Garcia Marques, Xiangyue Zhang, Nicholas M. Riley, Sarah M. Totten, Abel Bermudez, Rosalie Nolley, Hongjuan Zhao, Lawrence Fong, Edgar G. Engleman, Sharon J. Pitteri, Carolyn R. Bertozzi, James D. Brooks

×

DNA-PK inhibition enhances neoantigen diversity and increases T cell responses to immunoresistant tumors
Allison Joy Nielsen, Gabriella Kyra Albert, Amelia Sanchez, Jiangli Chen, Jing Liu, Andres Sebastian Davalos, Degui Geng, Xander G. Bradeen, Jennifer D. Hintzsche, William Robinson, Martin McCarter, Carol M. Amato, Richard Tobin, Kasey L. Couts, Breelyn Ann Wilky, Eduardo Davila
Allison Joy Nielsen, Gabriella Kyra Albert, Amelia Sanchez, Jiangli Chen, Jing Liu, Andres Sebastian Davalos, Degui Geng, Xander G. Bradeen, Jennifer D. Hintzsche, William Robinson, Martin McCarter, Carol M. Amato, Richard Tobin, Kasey L. Couts, Breelyn Ann Wilky, Eduardo Davila
View: Text | PDF

DNA-PK inhibition enhances neoantigen diversity and increases T cell responses to immunoresistant tumors

  • Text
  • PDF
Abstract

Effective antitumor T cell activity relies on the expression and MHC presentation of tumor neoantigens. Tumor cells can evade T cell detection by silencing the transcription of antigens or by altering MHC machinery resulting in inadequate neoantigen-specific T cell activation. We identified DNA-PK inhibitor (DNA-PKi) NU7441 as a promising immunomodulator that reduced immunosuppressive proteins while increasing MHC-I expression in a panel of human melanoma cell lines. In tumor-bearing mice, combination therapy using NU7441 and immune adjuvants STING ligand and CD40 agonist (NU-SL40) substantially increased and diversified the neoantigen landscape, antigen presenting machinery, and consequently substantially increased both the number and repertoire of neoantigen-reactive tumor infiltrating lymphocytes (TILs). DNA-PK-inhibition or knockout promoted transcription and protein expression of various neoantigens in human and mouse melanomas and induced sensitivity to ICB in resistant tumors. In patients, PRKDC levels inversely correlated with MHC I expression and CD8 TILs but positively correlated with increased neoantigen loads and improved responses to ICB. These studies suggest that inhibiting DNA-PK activity can restore tumor immunogenicity by increasing neoantigen expression and presentation and broadening the neoantigen-reactive T cell population.

Authors

Allison Joy Nielsen, Gabriella Kyra Albert, Amelia Sanchez, Jiangli Chen, Jing Liu, Andres Sebastian Davalos, Degui Geng, Xander G. Bradeen, Jennifer D. Hintzsche, William Robinson, Martin McCarter, Carol M. Amato, Richard Tobin, Kasey L. Couts, Breelyn Ann Wilky, Eduardo Davila

×
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • …
  • 228
  • 229
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts