Antagonists (e.g., Ziconotide, Gabapentin) of the CaV2.2 (N-type) calcium channels are used clinically as analgesics for chronic pain. However, their use is limited by narrow therapeutic windows, difficult dosing routes (Ziconotide), misuse and overdoses (Gabapentin), as well as a litany of adverse effects. Expansion of novel pain therapeutics may emerge from mechanism-based interrogation of CaV2.2. Here we report the identification of C2230, an aryloxy-hydroxypropylamine, as a CaV2.2 blocker. C2230 trapped and stabilized inactivated CaV2.2 in a slow-recovering state and accelerated the open-state inactivation of the channel, conferring an advantageous use-dependent inhibition profile. C2230 inhibited CaV2.2 during high-frequency stimulation, while sparing other voltage-gated ion channels. C2230 inhibited CaV2.2 in dorsal root and trigeminal ganglia neurons from rats, marmosets, and humans in a G-protein-coupled receptor-independent manner. Further, C2230 reduced evoked excitatory postsynaptic currents and excitatory neurotransmitter release in the spinal cord, leading to relief of neuropathic, orofacial, and osteoarthritic pain-like behaviors via three different routes of administration. C2230 also decreased fiber photometry-based calcium responses in the parabrachial nucleus, mitigated aversive behavioral responses to mechanical stimuli after neuropathic injury, and preserved protective pain responses, all without affecting motor or cardiovascular function. Finally, site-directed mutation analysis demonstrated that C2230 binds differently than other known CaV2.2 blockers, making it a promising lead compound for analgesic development.
Cheng Tang, Kimberly Gomez, Yan Chen, Heather N. Allen, Sara Hestehave, Erick J. Rodríguez-Palma, Santiago Loya-Lopez, Aida Calderon-Rivera, Paz Duran, Tyler S. Nelson, Siva Rama Raju Kanumuri, Bijal Shah, Nihar R. Panigrahi, Samantha Perez-Miller, Morgan K. Schackmuth, Shivani Ruparel, Amol Patwardhan, Theodore J. Price, Paramjit S. Arora, Ravindra K. Sharma, Abhisheak Sharma, Jie Yu, Olga A. Korczeniewska, Rajesh Khanna
Intestinal stem cells are crucial for maintaining intestinal homeostasis, yet their transformation into tumor stem cells in the context of microbial infection remains poorly understood. Fusobacterium nucleatum (F. nucleatum) is frequently associated with the onset and progression of colorectal cancer (CRC). In this study, we uncovered that F. nucleatum colonized the depths of gut crypts in both human CRC patients and mouse models. Through single-cell sequencing analysis, we demonstrated that F. nucleatum infection reprogrammed crypt cells and activated LY6A+ revival stem cells (RSCs), promoting their hyperproliferation and subsequent transformation into tumor stem cells, which accelerated intestinal carcinogenesis. Mechanistically, we identified LY6A as a GPI-anchored membrane receptor for F. nucleatum. Upon binding, F. nucleatum induced upregulation of RPS14 via the LY6A receptor, driving RSC hyperactivity and tumorigenic conversion. Functional studies showed that genetic ablation of Ly6a in intestinal epithelial cells or Rps14 in LY6A+ RSCs substantially reduced F. nucleatum colonization and tumorigenesis. Moreover, clinical CRC cohorts analysis revealed a strong correlation between F. nucleatum infection, RSC expansion, and elevated RPS14 expression in tumor tissues. These findings highlight an alternative F. nucleatum-LY6A-RPS14 signaling axis as a critical driver of CRC progression and propose potential therapeutic targets for effective CRC intervention.
Qinying Wang, Tingting Hu, Qinyuan Zhang, Yichi Zhang, Xiaoxu Dong, Yutao Jin, Jinming Li, Yangyang Guo, Fanying Guo, Ziying Chen, Peijie Zhong, Yongzhi Yang, Yanlei Ma
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS), the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We showed that, at early stage, CNS-recruited neutrophils produced neutrophil extracellular traps (NETs) rich in CRAMP that was required for EAE initiation. NET-associated CRAMP stimulated IL-6 production by dendritic cells via the cGAS/STING pathway, thereby promoting encephalitogenic Th17 response. However, at a later disease stage, neurons also expressed CRAMP that reduced EAE severity. Camp knockdown in neurons led to disease exacerbation, while local injection of CRAMP1–39 at the peak of EAE promoted disease remission. In vitro, CRAMP1–39 regulated the activation of microglia and astrocytes through the formyl peptide receptor (FPR)2. Finally, administration of butyrate, a gut microbiota-derived metabolite, stimulated the expression of neural CRAMP via the free fatty acids receptors (FFAR)2/3, and prevented EAE. This study shows that CRAMP produced by different cell types have opposing effects on neuroinflammation, offering therapeutic opportunities for MS and other neuroinflammatory disorders.
Subash Chand Verma, Emmanuelle Enée, Kanchanadevi Manasse, Feriel Rebhi, Axelle Penc, David Romeo-Guitart, Cuc Bui Thi, Matthias Titeux, Franck Oury, Simon Fillatreau, Roland Liblau, Julien Diana
The Hippo signaling pathway plays a key role in tumorigenesis in different cancer types. We investigated the role of the Hippo “effector” YAP1 on the tumor immune microenvironment (TIME) of urothelial carcinoma of bladder (UCB) and evaluated the efficacy of immunotherapy in the context of YAP1 signaling. We performed numerous in vitro and in vivo experiments to determine the role of YAP1 using genetic and pharmacological attenuation of YAP1 activity. Briefly, RNA sequencing was carried out with mice and human cell lines to identify novel YAP1-regulated downstream targets unbiasedly. We then experimentally confirmed that YAP1 regulates the TIME through the IL-6/STAT3 signaling pathway and varied C-X-C motif chemokine regulation. We analyzed several human sample sets to explore the TIME status in the context of YAP1 expression. Our data indicate that YAP1 attenuation decreases M2 macrophages and MDSCs in the TIME compared to YAP1 expressing cells. In summary, this study provides insights on YAP1 signaling as a driver for cancer stemness and an inducer of immunosuppressive TIME. Moreover, the therapeutic efficacy of YAP1 attenuation indicates that combined blockade of YAP1 and immune checkpoints may yield clinical value for treating UCB patients.
Pritam Sadhukhan, Mingxiao Feng, Emily J. Illingworth, Ido Sloma, Akira Ooki, Andres Matoso, David Sidransky, Burles A. Johnson 3rd, Luigi Marchionni, Fenna C.M. Sillé, Woonyoung Choi, David J. McConkey, Mohammad Obaidul Hoque
Disruptions of blood pressure (BP) circadian variation are closely associated with an increased risk of cardiovascular disease (CVD). Thus, gaining insights into the molecular mechanisms of BP circadian variation is essential for comprehending BP regulation. Human genetic analyses suggest that PR domain-containing protein 16 (PRDM16), a transcription factor highly expressed in vascular smooth muscle cells (VSMC), is significantly associated with BP-related traits. However, the roles of PRDM16 in BP regulation are largely unknown. Here, we demonstrate that BP in VSMC-specific Prdm16 knockout (Prdm16SMKO) mice was significantly lower than that in control mice during the active period, resulting in aberrant BP circadian variation. Mesenteric artery rings from Prdm16SMKO mice showed reduced response to phenylephrine. Mechanistically, we identified adrenergic receptor alpha 1d (Adra1d) as a transcriptional target of PRDM16. Notably, PRDM16 exhibits a remarkable circadian expression pattern and regulates the expression of clock genes, particularly Npas2, which is crucial for BP circadian variation regulation. Consequently, PRDM16 deficiency in VSMC causes disrupted BP circadian variation through reduced response to adrenergic signaling and clock gene regulation. Our findings offer substantial insights into the intricate molecular pathways that govern circadian fluctuations in BP.
Zhenguo Wang, Wenjuan Mu, Juan Zhong, Ruiyan Xu, Yaozhong Liu, Guizhen Zhao, Yanhong Guo, Jifeng Zhang, Ida Surakka, Y. Eugene Chen, Lin Chang
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. Post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial hypoxia and glycolysis related gene signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Ratnakar Tiwari, Rajni Sharma, Ganeshkumar Rajendran, Gabriella S. Borkowski, Si Young An, Michael Schonfeld, James O'Sullivan, Matthew J. Schipma, Yalu Zhou, Guillaume Courbon, Benjamin R. Thomson, Valentin David, Susan E. Quaggin, Edward B. Thorp, Navdeep S. Chandel, Pinelopi P. Kapitsinou
BACKGROUND. Antiretroviral therapy (ART) has improved the clinical management of HIV-1 infection. However, little is known about how the latest ART recommendations affect the heterogeneity of HIV-1 reservoir size. METHODS. We used a complete statistical approach to outline parameters underlying diversity in HIV-1 reservoir size in a cohort of 892 people with HIV-1 (PWH) on suppressive ART for >3 years. Total HIV-1-DNA levels were measured in PBMCs using digital droplet PCR (ddPCR). RESULTS. We classified 179 (20%) participants as Low Viral Reservoir Treated (LoViReT, <50 HIV-1-DNA copies/106 PBMCs). Twenty variables were collected to explore their association with the LoViReT phenotype using machine learning approaches. Nadir CD4 and zenith pre-ART viral load were closely associated with LoViReT status, with lower CD4 recovery, shorter time from diagnosis to undetectable viral load, and initiation of treatment with an integrase inhibitor (InSTI)–containing regimen. Initiating ART with any InSTI was also associated with shorter time to undetectable viremia. Locally estimated scatterplot smoothing (LOESS) regression revealed a progressive reduction in the size of the HIV-1 reservoir in individuals who started ART after 2007. Similarly, higher nadir CD4 and shorter time to undetectable viremia were observed when treatment was initiated after that year. CONCLUSION. Our findings demonstrate that the progressive implementation of earlier, universal treatment at diagnosis and the use of InSTIs affect the size of the HIV-1 reservoir. Our work shows that effective management of infection is the first step toward reducing the reservoir and brings us closer to achieving a cure. FUNDING. U.S. National Institutes of Health, Division of AIDS at the National Institute of Allergy and Infectious Diseases, Merck Sharp & Dohme.
Irene González-Navarro, Víctor Urrea, Cristina Gálvez, Maria del Carmen Garcia-Guerrero, Sara Morón-López, Maria C. Puertas, Eulàlia Grau, Beatriz Mothe, Lucía Bailón, Cristina Miranda, Felipe García, Lorna Leal, Linos Vandekerckhove, Vincent C. Marconi, Rafick P. Sekaly, Bonaventura Clotet, Javier Martinez-Picado, Maria Salgado
Despite the revolutionary achievements of chimeric antigen receptor (CAR) T cell therapy in treating cancers, especially leukemia, several key challenges still limit its therapeutic efficacy. Of particular relevance is the relapse of cancer in large part, as a result of exhaustion and short persistence of CAR-T cells in vivo. IL-2-inducible T cell kinase (ITK) is a critical modulator of the strength of T-cell receptor (TCR) signaling, while its role in CAR signaling is unknown. By electroporation of clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) ribonucleoprotein (RNP) complex into CAR-T cells, we successfully deleted ITK in CD19-CAR-T cells with high efficiency. Bulk and single-cell RNA sequencing (scRNA-seq) analyses revealed down-regulation of exhaustion and up-regulation of memory gene signatures in ITK-deficient CD19-CAR-T cells. Our results further demonstrated a significant reduction of T cell exhaustion and enhancement of T cell memory, with significant improvement of CAR-T cell expansion and persistence both in vitro and in vivo. Moreover, ITK-deficient CD19-CAR-T cells showed better control of tumor relapse. Our work provides a promising strategy of targeting ITK to develop sustainable CAR-T products for clinical use.
Zheng Fu, Zineng Huang, Hao Xu, Qingbai Liu, Jing Li, Keqing Song, Yating Deng, Yujia Tao, Huifang Zhang, Peilong Wang, Heng Li, Yue Sheng, Aijun Zhou, Lianbin Han, Yan Fu, Chen-Zhi Wang, Saurav Kumar Choudhary, Kaixiong Ye, Gianluca Veggiani, Zhihong Li, Avery August, Weishan Huang, Qiang Shan, Hongling Peng
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that C-terminal R/KXXR/K NGF motif interacts with extracellular “b” NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.
Chloe J. Peach, Raquel Tonello, Elisa Damo, Kimberly Gomez, Aida Calderon-Rivera, Renato Bruni, Harsh Bansia, Laura Maile, Ana-Marie Manu, Hyunggu Hahn, Alex R.B. Thomsen, Brian L. Schmidt, Steve Davidson, Amedee des Georges, Rajesh Khanna, Nigel W. Bunnett
The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice. However, some mortality and adverse effects were observed in neonatal-treated mice. Intrathecal administration of either vector at postnatal day (PND) 5 normalized EEG patterns in Slc6a1+/- mice, but in Slc6a1-/- mice the treatment only rescued nest building without impact on EEG. Both vectors were well-tolerated in all mice treated at PND5 or later (including WT mice), up to 1 year post-injection. Overall, our data demonstrate compelling efficacy when mice are treated at an early development age. We also identified that outside of the neonatal treatment window, the severe homozygous KO model is more refractory to treatment, whereas our treatments in the heterozygous mice, which genotypically match human patients, have resulted in stronger benefits.
Weirui Guo, Matthew Rioux, Frances Shaffo, Yuhui Hu, Ze Yu, Chao Xing, Steven J. Gray
No posts were found with this tag.