Persistent depolarization of β-cells leads to Gs to Gq signaling switch, explaining the differential effects of GLP-1 and GIP on insulin secretion in diabetes.
By restoring glucose-regulated insulin secretion, glucagon-like peptide-1–based (GLP-1–based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic β cells. However, the reason why only GLP-1–based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to β cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of β cells due to genetic (β cell–specific Kcnj11–/– mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse β cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in β cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.
Okechi S. Oduori, Naoya Murao, Kenju Shimomura, Harumi Takahashi, Quan Zhang, Haiqiang Dou, Shihomi Sakai, Kohtaro Minami, Belen Chanclon, Claudia Guida, Lakshmi Kothegala, Johan Tolö, Yuko Maejima, Norihide Yokoi, Yasuhiro Minami, Takashi Miki, Patrik Rorsman, Susumu Seino