Additional cause of dyskeratosis congenita discovered. Coverage by Medical Xpress on Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita.
Diabetes and Alzheimer's risk. Coverage by Medical Daily, Cherry Creek News, Business Standard and Bioscience Technology on Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo.
Mechanism causing blood pressure drug ineffectiveness identified. Coverage by The Times of India , News-Medical.net, and Medical Xpress on Integrated compensatory network is activated in the absence of NCC phosphorylation.
DNA anomalies in children with chronic kidney disease. Coverage by Renal & Urology News, Medical Xpress, and News-Medical.net, on Genomic imbalances in pediatric patients with chronic kidney disease.
Study identifies why smoking worsens COPD in some patients. Coverage by Healthline, Futurity, and Lung Disease News, and Scicasts on Suppression of NLRX1 in chronic obstructive pulmonary disease.
Effect of oxidative stress on the heart muscle. Coverage by Medical Xpress on Prevention of PKG1α oxidation augments cardioprotection in the stressed heart.
A vascular niche for boosted blood stem cell production. Coverage by Fred Hutchinson Cancer Research Center on Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells.
Role of calcium signaling in controlling inflammation during chronic lung infection. Coverage by Medical Xpress on STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection.
New understanding of eye can prevent eye problems. Coverage by International Business Times on Neurovascular crosstalk between interneurons and capillaries is required for vision.
Preventing stillbirths. Coverage by Nature on CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage.
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic
Hemanth Tummala, Amanda Walne, Laura Collopy, Shirleny Cardoso, Josu de la Fuente, Sarah Lawson, James Powell, Nicola Cooper, Alison Foster, Shehla Mohammed, Vincent Plagnol, Thomas Vulliamy, Inderjeet Dokal
Epidemiological studies show that patients with type 2 diabetes (T2DM) and individuals with a diabetes-independent elevation in blood glucose have an increased risk for developing dementia, specifically dementia due to Alzheimer’s disease (AD). These observations suggest that abnormal glucose metabolism likely plays a role in some aspects of AD pathogenesis, leading us to investigate the link between aberrant glucose metabolism, T2DM, and AD in murine models. Here, we combined two techniques — glucose clamps and in vivo microdialysis — as a means to dynamically modulate blood glucose levels in awake, freely moving mice while measuring real-time changes in amyloid-β (Aβ), glucose, and lactate within the hippocampal interstitial fluid (ISF). In a murine model of AD, induction of acute hyperglycemia in young animals increased ISF Aβ production and ISF lactate, which serves as a marker of neuronal activity. These effects were exacerbated in aged AD mice with marked Aβ plaque pathology. Inward rectifying, ATP-sensitive potassium (KATP) channels mediated the response to elevated glucose levels, as pharmacological manipulation of KATP channels in the hippocampus altered both ISF Aβ levels and neuronal activity. Taken together, these results suggest that KATP channel activation mediates the response of hippocampal neurons to hyperglycemia by coupling metabolism with neuronal activity and ISF Aβ levels.
Shannon L. Macauley, Molly Stanley, Emily E. Caesar, Steven A. Yamada, Marcus E. Raichle, Ronaldo Perez, Thomas E. Mahan, Courtney L. Sutphen, David M. Holtzman
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by
P. Richard Grimm, Yoskaly Lazo-Fernandez, Eric Delpire, Susan M. Wall, Susan G. Dorsey, Edward J. Weinman, Richard Coleman, James B. Wade, Paul A. Welling
Miguel Verbitsky, Simone Sanna-Cherchi, David A. Fasel, Brynn Levy, Krzysztof Kiryluk, Matthias Wuttke, Alison G. Abraham, Frederick Kaskel, Anna Köttgen, Bradley A. Warady, Susan L. Furth, Craig S. Wong, Ali G. Gharavi
Cigarette smoke (CS) and viruses promote the inflammation and remodeling associated with chronic obstructive pulmonary disease (COPD). The MAVS/RIG-I–like helicase (MAVS/RLH) pathway and inflammasome-dependent innate immune pathways are important mediators of these responses. At baseline, the MAVS/RLH pathway is suppressed, and this inhibition must be reversed to engender tissue effects; however, the mechanisms that mediate activation and repression of the pathway have not been defined. In addition, the regulation and contribution of MAVS/RLH signaling in CS-induced inflammation and remodeling responses and in the development of human COPD remain unaddressed. Here, we demonstrate that expression of NLRX1, which inhibits the MAVS/RLH pathway and regulates other innate immune responses, was markedly decreased in 3 independent cohorts of COPD patients. NLRX1 suppression correlated directly with disease severity and inversely with pulmonary function, quality of life, and prognosis. In murine models, CS inhibited NLRX1, and CS-induced inflammation, alveolar destruction, protease induction, structural cell apoptosis, and inflammasome activation were augmented in NLRX1-deficient animals. Conversely, MAVS deficiency abrogated this CS-induced inflammation and remodeling. Restoration of NLRX1 in CS-exposed animals ameliorated alveolar destruction. These data support a model in which CS-dependent NLRX1 inhibition facilitates MAVS/RHL activation and subsequent inflammation, remodeling, protease, cell death, and inflammasome responses.
Min-Jong Kang, Chang Min Yoon, Bo Hye Kim, Chang-Min Lee, Yang Zhou, Maor Sauler, Rober Homer, Anish Dhamija, Daniel Boffa, Andrew Phillip West, Gerald S. Shadel, Jenny P. Ting, John R. Tedrow, Naftali Kaminski, Woo Jin Kim, Chun Geun Lee, Yeon-Mok Oh, Jack A. Elias
The cGMP-dependent protein kinase-1α (PKG1α) transduces NO and natriuretic peptide signaling; therefore, PKG1α activation can benefit the failing heart. Disease modifiers such as oxidative stress may depress the efficacy of PKG1α pathway activation and underlie variable clinical results. PKG1α can also be directly oxidized, forming a disulfide bond between homodimer subunits at cysteine 42 to enhance oxidant-stimulated vasorelaxation; however, the impact of PKG1α oxidation on myocardial regulation is unknown. Here, we demonstrated that PKG1α is oxidized in both patients with heart disease and in rodent disease models. Moreover, this oxidation contributed to adverse heart remodeling following sustained pressure overload or Gq agonist stimulation. Compared with control hearts and myocytes, those expressing a redox-dead protein (PKG1αC42S) better adapted to cardiac stresses at functional, histological, and molecular levels. Redox-dependent changes in PKG1α altered intracellular translocation, with the activated, oxidized form solely located in the cytosol, whereas reduced PKG1αC42S translocated to and remained at the outer plasma membrane. This altered PKG1α localization enhanced suppression of transient receptor potential channel 6 (TRPC6), thereby potentiating antihypertrophic signaling. Together, these results demonstrate that myocardial PKG1α oxidation prevents a beneficial response to pathological stress, may explain variable responses to PKG1α pathway stimulation in heart disease, and indicate that maintaining PKG1α in its reduced form may optimize its intrinsic cardioprotective properties.
Taishi Nakamura, Mark J. Ranek, Dong I. Lee, Virginia Shalkey Hahn, Choel Kim, Philip Eaton, David A. Kass
Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and
Jennifer L. Gori, Jason M. Butler, Yan-Yi Chan, Devikha Chandrasekaran, Michael G. Poulos, Michael Ginsberg, Daniel J. Nolan, Olivier Elemento, Brent L. Wood, Jennifer E. Adair, Shahin Rafii, Hans-Peter Kiem
Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including
Ludovic Desvignes, Carl Weidinger, Patrick Shaw, Martin Vaeth, Theo Ribierre, Menghan Liu, Tawania Fergus, Lina Kozhaya, Lauren McVoy, Derya Unutmaz, Joel D. Ernst, Stefan Feske
Functional interactions between neurons, vasculature, and glia within neurovascular units are critical for maintenance of the retina and other CNS tissues. For example, the architecture of the neurosensory retina is a highly organized structure with alternating layers of neurons and blood vessels that match the metabolic demand of neuronal activity with an appropriate supply of oxygen within perfused blood. Here, using murine genetic models and cell ablation strategies, we have demonstrated that a subset of retinal interneurons, the amacrine and horizontal cells, form neurovascular units with capillaries in 2 of the 3 retinal vascular plexuses. Moreover, we determined that these cells are required for generating and maintaining the intraretinal vasculature through precise regulation of hypoxia-inducible and proangiogenic factors, and that amacrine and horizontal cell dysfunction induces alterations to the intraretinal vasculature and substantial visual deficits. These findings demonstrate that specific retinal interneurons and the intraretinal vasculature are highly interdependent, and loss of either or both elicits profound effects on photoreceptor survival and function.
Yoshihiko Usui, Peter D. Westenskow, Toshihide Kurihara, Edith Aguilar, Susumu Sakimoto, Liliana P. Paris, Carli Wittgrove, Daniel Feitelberg, Mollie S.H. Friedlander, Stacey K. Moreno, Michael I. Dorrell, Martin Friedlander
Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal
Vandana Chaturvedi, James M. Ertelt, Tony T. Jiang, Jeremy M. Kinder, Lijun Xin, Kathryn J. Owens, Helen N. Jones, Sing Sing Way