The manner in which growth factors acting at the cell surface regulate activity of myogenic basic-helix-loop-helix proteins in the nucleus and thus control the fate of committed skeletal myoblasts remains poorly understood. In this study, we report that immunoreactive Gs protein alpha-subunits (Gs alpha) localize to nuclei of proliferating C2C12 myoblasts but not to nuclei of differentiated postmitotic C2C12 myotubes. To explore the biological significance of this observation, we placed a cDNA encoding Gs alpha in an expression vector under the control of a steroid-inducible promoter and isolated colonies of stably transfected C2C12 myoblasts. Dexamethasone-induced expression of activated Gs alpha markedly delayed differentiation in comparison with uninduced stably transfected cells, which differentiated normally in mitogen-depleted media. Northern blot analysis showed that impaired differentiation was associated with delayed up-regulation of MyoD and myogenin and delayed down-regulation of Id, a dominant negative inhibitor of differentiation. Similar impairment of differentiation could not be reproduced in wild-type C2C12 cells by increasing intracellular cAMP either with forskolin or treatment with a cell-permeable cAMP analog. However, treatment of myoblasts with cholera toxin markedly inhibited myogenic differentiation. Taken together, these findings suggest a novel role for Gs alpha in modulating myogenic differentiation.
C C Tsai, J E Saffitz, J J Billadello
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.