Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells.
C C Tsai, … , J E Saffitz, J J Billadello
C C Tsai, … , J E Saffitz, J J Billadello
Published January 1, 1997
Citation Information: J Clin Invest. 1997;99(1):67-76. https://doi.org/10.1172/JCI119135.
View: Text | PDF
Research Article

Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells.

  • Text
  • PDF
Abstract

The manner in which growth factors acting at the cell surface regulate activity of myogenic basic-helix-loop-helix proteins in the nucleus and thus control the fate of committed skeletal myoblasts remains poorly understood. In this study, we report that immunoreactive Gs protein alpha-subunits (Gs alpha) localize to nuclei of proliferating C2C12 myoblasts but not to nuclei of differentiated postmitotic C2C12 myotubes. To explore the biological significance of this observation, we placed a cDNA encoding Gs alpha in an expression vector under the control of a steroid-inducible promoter and isolated colonies of stably transfected C2C12 myoblasts. Dexamethasone-induced expression of activated Gs alpha markedly delayed differentiation in comparison with uninduced stably transfected cells, which differentiated normally in mitogen-depleted media. Northern blot analysis showed that impaired differentiation was associated with delayed up-regulation of MyoD and myogenin and delayed down-regulation of Id, a dominant negative inhibitor of differentiation. Similar impairment of differentiation could not be reproduced in wild-type C2C12 cells by increasing intracellular cAMP either with forskolin or treatment with a cell-permeable cAMP analog. However, treatment of myoblasts with cholera toxin markedly inhibited myogenic differentiation. Taken together, these findings suggest a novel role for Gs alpha in modulating myogenic differentiation.

Authors

C C Tsai, J E Saffitz, J J Billadello

×

Full Text PDF

Download PDF (404.15 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts