The kidney glomerular capillaries are frequent sites of immune complex deposition and subsequent neutrophil accumulation in post-infectious and rapidly progressive glomerulonephritis. However, the mechanisms of neutrophil recruitment remain enigmatic, and there is no targeted therapeutic to avert this proximal event in glomerular inflammation. The uniquely human activating Fc receptor FcγRIIA promotes glomerular neutrophil accumulation and damage in anti–glomerular basement membrane–induced (anti-GBM–induced) glomerulonephritis when expressed on murine neutrophils. Here, we found that neutrophils are directly captured by immobilized IgG antibodies under physiological flow conditions in vitro through FcγRIIA-dependent, Abl/Src tyrosine kinase–mediated F-actin polymerization. Biophysical measurements showed that the lifetime of FcγRIIA-IgG bonds increased under mechanical force in an F-actin–dependent manner, which could enable the capture of neutrophils under physiological flow. Kidney intravital microscopy revealed that circulating neutrophils, which were similar in diameter to glomerular capillaries, abruptly arrested following anti-GBM antibody deposition via neutrophil FcγRIIA and Abl/Src kinases. Accordingly, inhibition of Abl/Src with bosutinib reduced FcγRIIA-mediated glomerular neutrophil accumulation and renal injury in experimental, crescentic anti-GBM nephritis. These data identify a pathway of neutrophil recruitment within glomerular capillaries following IgG deposition that may be targeted by bosutinib to avert glomerular injury.
Hiroshi Nishi, Kazuhiro Furuhashi, Xavier Cullere, Gurpanna Saggu, Mark J. Miller, Yunfeng Chen, Florencia Rosetti, Samantha L. Hamilton, Lihua Yang, Spencer P. Pittman, Jiexi Liao, Jan M. Herter, Jeffrey C. Berry, Daniel J. DeAngelo, Cheng Zhu, George C. Tsokos, Tanya N. Mayadas
In vivo neutrophil trafficking in glomerular capillaries at steady state and after anti-GBM treatment in LysM-GFP mice.