Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepatic β-arrestin 2 is essential for maintaining euglycemia
Lu Zhu, … , Wei Chen, Jürgen Wess
Lu Zhu, … , Wei Chen, Jürgen Wess
Published June 26, 2017
Citation Information: J Clin Invest. 2017;127(8):2941-2945. https://doi.org/10.1172/JCI92913.
View: Text | PDF
Brief Report Endocrinology Metabolism

Hepatic β-arrestin 2 is essential for maintaining euglycemia

  • Text
  • PDF
Abstract

An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.

Authors

Lu Zhu, Mario Rossi, Yinghong Cui, Regina J. Lee, Wataru Sakamoto, Nicole A. Perry, Nikhil M. Urs, Marc G. Caron, Vsevolod V. Gurevich, Grzegorz Godlewski, George Kunos, Minyong Chen, Wei Chen, Jürgen Wess

×

Figure 1

Insulin signaling is not impaired in hep-barr2–KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Insulin signaling is not impaired in hep-barr2–KO mice.
(A) i.p. ITT. Da...
(A) i.p. ITT. Data are shown as mean ± SEM (n = 9 mice per group, 20-week-old males). (B) Insulin-induced phosphorylation of AKT and GSK3α/β remains unaffected by the lack of β-arrestin 2 in hepatocytes. Primary hepatocytes prepared from hep-barr2–KO and control mice were incubated with insulin (10 nM) or saline for 15 minutes. Cell lysates were used for immunoblotting with the indicated antibodies. Representative blots are shown. See complete unedited blots in the supplemental material. (C) Quantification via densitometry (NIH ImageJ software) of the immunoblotting data shown in B. Phospho-protein expression levels were normalized by total AKT or total GSK3α/β expression, respectively. Data represent mean ± SEM (n = 5 mice per group, 16- to 20-week-old males). (D and E). Hyperinsulinemic euglycemic clamp studies. In D, the time course of blood glucose and GIR are shown. Data in panel E were obtained during the steady-state period of the clamp (gray area in D). Values are shown as mean ± SEM (n = 3 or 4 mice per group, 20-week-old males).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts