Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
JAK2-binding long noncoding RNA promotes breast cancer brain metastasis
Shouyu Wang, Ke Liang, Qingsong Hu, Ping Li, Jian Song, Yuedong Yang, Jun Yao, Lingegowda Selanere Mangala, Chunlai Li, Wenhao Yang, Peter K. Park, David H. Hawke, Jianwei Zhou, Yan Zhou, Weiya Xia, Mien-Chie Hung, Jeffrey R. Marks, Gary E. Gallick, Gabriel Lopez-Berestein, Elsa R. Flores, Anil K. Sood, Suyun Huang, Dihua Yu, Liuqing Yang, Chunru Lin
Shouyu Wang, Ke Liang, Qingsong Hu, Ping Li, Jian Song, Yuedong Yang, Jun Yao, Lingegowda Selanere Mangala, Chunlai Li, Wenhao Yang, Peter K. Park, David H. Hawke, Jianwei Zhou, Yan Zhou, Weiya Xia, Mien-Chie Hung, Jeffrey R. Marks, Gary E. Gallick, Gabriel Lopez-Berestein, Elsa R. Flores, Anil K. Sood, Suyun Huang, Dihua Yu, Liuqing Yang, Chunru Lin
View: Text | PDF | Expression of Concern
Research Article Cell biology Oncology

JAK2-binding long noncoding RNA promotes breast cancer brain metastasis

  • Text
  • PDF
Abstract

Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M– and IL-6–triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.

Authors

Shouyu Wang, Ke Liang, Qingsong Hu, Ping Li, Jian Song, Yuedong Yang, Jun Yao, Lingegowda Selanere Mangala, Chunlai Li, Wenhao Yang, Peter K. Park, David H. Hawke, Jianwei Zhou, Yan Zhou, Weiya Xia, Mien-Chie Hung, Jeffrey R. Marks, Gary E. Gallick, Gabriel Lopez-Berestein, Elsa R. Flores, Anil K. Sood, Suyun Huang, Dihua Yu, Liuqing Yang, Chunru Lin

×

Figure 9

Lnc-BM associates with JAK2 in vitro and in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Lnc-BM associates with JAK2 in vitro and in vivo.
(A) RIP-qPCR detection...
(A) RIP-qPCR detection of the indicated RNAs retrieved using indicated antibodies in 231-Br cells with OSM treatment for the indicated times (n = 3 independent experiments, paired Student’s t test). (B) In vitro RNA pull-down coupled with dot-blot assay using indicated RNA transcripts and recombinant proteins. Right panel: Annotation for each dot. (C and D) Graphic illustration of MS2-TRAP assay (C, top panel). IB (C, bottom panel) and RT-qPCR detection of MS2-Lnc-BM (D) of anti-GST immunoprecipitates in cells transfected with indicated expression constructs, followed by OSM stimulation (n = 3 independent experiments, paired Student’s t test). (E) Saturation curve KD determination of interaction between indicated lncRNAs and recombinant GST-tagged JAK2 (n = 3 independent experiments). (F) Top panel: Graphic illustration of Lnc-BM–JAK2 interaction. Bottom panel: IB detection of streptavidin pull-down using His-tagged JH2 WT/mutants and biotinylated Lnc-BM. (G) Competition binding assay KD determination of interaction between Lnc-BM FL/mutants and recombinant JH2 WT/mutants, with unlabeled Lnc-BM titrated from 10 μM to 0.1 nM (n = 3 independent experiments). Data are mean ± SEM; NS, P > 0.05; *P < 0.05, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts