Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Geoffrey A. Preidis, … , Kang Ho Kim, David D. Moore
Published March 13, 2017
Citation Information: J Clin Invest. 2017;127(4):1193-1201. https://doi.org/10.1172/JCI88893.
View: Text | PDF
Review Series Article has an altmetric score of 4

Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance

  • Text
  • PDF
Abstract

The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

Authors

Geoffrey A. Preidis, Kang Ho Kim, David D. Moore

×

Figure 3

Overlapping target genes oppositely regulated by FXR and PPARα.

Options: View larger image (or click on image) Download as PowerPoint
Overlapping target genes oppositely regulated by FXR and PPARα.
(A) Thre...
(A) Three microarray data sets (fenofibrate, GSE67796; Fxr knockout, GSE20599; Wy-14,643, GSE8295) were analyzed. Among a total of 14,026 genes, 2,634 (for fenofibrate), 2,028 (for Fxr knockout), and 4,671 genes (for Wy-14,643) were responsive to either PPARα activation (fenofibrate and Wy-14,643 treatment) or FXR genetic loss (P < 0.01), and many were responsive to both — fenofibrate treatment and Fxr knockout had 765 genes in common, and Fxr knockout and Wy-14,643 treatment had 1,104 genes in common. The majority of overlapping genes were regulated in the same direction (induced or repressed in both; 67.2% and 61.3% in each comparison). (B) DAVID analysis (https://david.ncifcrf.gov) of commonly regulated genes in the two comparisons of PPARα activation/FXR inhibition microarrays. Key aspects of increased or decreased genes were their locations in mitochondrion, membrane, endoplasmic reticulum, or extracellular space and functions as metabolic pathways, complement/coagulation, or fatty acid metabolism. Word cloud analysis (http://www.wordle.net) showed representation of the frequency of terms in the DAVID analysis outputs of the Gene Ontology Cellular Component (left) and KEGG pathway (right) (P < 0.05).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 7 X users
125 readers on Mendeley
See more details