Defective apoptotic death of activated macrophages has been implicated in the pathogenesis of rheumatoid arthritis (RA). However, the molecular signatures defining apoptotic resistance of RA macrophages are not fully understood. Here, global transcriptome profiling of RA macrophages revealed that the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) critically regulates diverse pathologic processes in synovial macrophages including the cell cycle, apoptosis, and proliferation. Transcriptomic analysis of NFAT5-deficient macrophages revealed the molecular networks defining cell survival and proliferation. Proinflammatory M1-polarizing stimuli and hypoxic conditions were responsible for enhanced NFAT5 expression in RA macrophages. An in vitro functional study demonstrated that NFAT5-deficient macrophages were more susceptible to apoptotic death. Specifically, CCL2 secretion in an NFAT5-dependent fashion bestowed apoptotic resistance to RA macrophages in vitro. Injection of recombinant CCL2 into one of the affected joints of
Susanna Choi, Sungyong You, Donghyun Kim, Soo Youn Choi, H. Moo Kwon, Hyun-Sook Kim, Daehee Hwang, Yune-Jung Park, Chul-Soo Cho, Wan-Uk Kim
Enhanced NFAT5 signature in RA synovial macrophages.