Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells
Julia A.M. Sung, … , David M. Margolis, Guido Ferrari
Julia A.M. Sung, … , David M. Margolis, Guido Ferrari
Published September 28, 2015
Citation Information: J Clin Invest. 2015;125(11):4077-4090. https://doi.org/10.1172/JCI82314.
View: Text | PDF
Research Article AIDS/HIV

Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

  • Text
  • PDF
Abstract

Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals.

Authors

Julia A.M. Sung, Joy Pickeral, Liqin Liu, Sherry A. Stanfield-Oakley, Chia-Ying Kao Lam, Carolina Garrido, Justin Pollara, Celia LaBranche, Mattia Bonsignori, M. Anthony Moody, Yinhua Yang, Robert Parks, Nancie Archin, Brigitte Allard, Jennifer Kirchherr, JoAnn D. Kuruc, Cynthia L. Gay, Myron S. Cohen, Christina Ochsenbauer, Kelly Soderberg, Hua-Xin Liao, David Montefiori, Paul Moore, Syd Johnson, Scott Koenig, Barton F. Haynes, Jeffrey L. Nordstrom, David M. Margolis, Guido Ferrari

×

Figure 8

LCA to assess HIVxCD3 DART–redirected CD8+ T cell activity.

Options: View larger image (or click on image) Download as PowerPoint
LCA to assess HIVxCD3 DART–redirected CD8+ T cell activity.
Resting CD4+...
Resting CD4+ T cells from HIV-infected, ART-suppressed patients were incubated with PHA (A) or VOR (B), plated in 12–36 replicate wells depending on the size of the patient’s latent reservoir, and cocultured with autologous CD8+ T cells at an E/T ratio of 1:10 in the absence or presence of HIVxCD3 or control DARTs at 100 ng/ml for 24 hours (or up to 96 hours where indicated), after which DARTs were washed off and CD8-depleted PBMCs from a seronegative donor were added to amplify residual virus. Wells were assessed for the presence or absence of p24 by ELISA at day 15. Combo indicates a 1:1 cocktail of 7B2xCD3 and A32xCD3 at a total concentration of 100 ng/ml. Results are shown as percent viral recovery (number of positive wells/total number plated), normalized to a control in which no CD8+ T cells are added. Dashed lines indicate undetectable viral recovery following incubation with combo DARTs, except for patient 408 in panel B, where they indicate undetectable viral recovery after 7B2xCD3 or A32xCD3 individually. NT indicates conditions not tested due to low cell availability. NT generally refers to 2 conditions not tested (7B2xCD3 or A32xCD3 individually), except for patient 408 in panel B, where NT refers to combo DARTs not tested. Refer to Supplemental Table 5 for the individual experimental values for each of the conditions tested.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts