Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NOTCH signaling in skeletal progenitors is critical for fracture repair
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Published March 7, 2016
Citation Information: J Clin Invest. 2016;126(4):1471-1481. https://doi.org/10.1172/JCI80672.
View: Text | PDF
Research Article Bone biology

NOTCH signaling in skeletal progenitors is critical for fracture repair

  • Text
  • PDF
Abstract

Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.

Authors

Cuicui Wang, Jason A. Inzana, Anthony J. Mirando, Yinshi Ren, Zhaoyang Liu, Jie Shen, Regis J. O’Keefe, Hani A. Awad, Matthew J. Hilton

×

Figure 7

Insufficient fracture stabilization is not absolutely required for the fracture nonunion observed in RBPjκPrx1 mutants.

Options: View larger image (or click on image) Download as PowerPoint
Insufficient fracture stabilization is not absolutely required for the f...
(A) A real-time radiographic comparison of 1.2-mm osteotomies in WT and RBPjκPrx1 mutants. n = 6 mice per genotype. (B) Representative μCT images of 1.2-mm osteotomies in WT and RBPjκCol1 mutants at 42 dpf. n = 6 mice per genotype. (C and D) Amira analyses of μCT data revealed significantly lower bone volume and minimum PMOI in defect zone. n = 6 mice per genotype. *P < 0.05 compared with WT by 2-tailed, unpaired Student’s t test. Results are expressed as mean ± SD. (E) ABH/OG staining and IHC for COL3A1 staining on femur fracture sections (1.2-mm osteotomy) from WT and RBPjκPrx1 mutants at 42 dpf revealed the formation of mesenchymal-like fibrous tissue (red arrows) in the 1.2-mm gap. n = 6 mice per genotype. Original magnification, ×5.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts