Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA-7a regulates pancreatic β cell function
Mathieu Latreille, … , Patrik Rorsman, Markus Stoffel
Mathieu Latreille, … , Patrik Rorsman, Markus Stoffel
Published May 1, 2014
Citation Information: J Clin Invest. 2014;124(6):2722-2735. https://doi.org/10.1172/JCI73066.
View: Text | PDF
Research Article Endocrinology Article has an altmetric score of 35

MicroRNA-7a regulates pancreatic β cell function

  • Text
  • PDF
Abstract

Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes.

Authors

Mathieu Latreille, Jean Hausser, Ina Stützer, Quan Zhang, Benoit Hastoy, Sofia Gargani, Julie Kerr-Conte, Francois Pattou, Mihaela Zavolan, Jonathan L.S. Esguerra, Lena Eliasson, Thomas Rülicke, Patrik Rorsman, Markus Stoffel

×

Figure 1

β cell–specific Mir7a2 loss-of-function mouse models display increased glucose tolerance due to improved secretory function.

Options: View larger image (or click on image) Download as PowerPoint
β cell–specific Mir7a2 loss-of-function mouse models display increased g...
(A) Relative miR-7a and miR-7b expression in pancreatic islets of Rip-Cre Mir7a1fl/fl, Rip-Cre Mir7a2fl/fl, and control mice at 8 weeks of age (n = 5–6). (B) Body weight of Rip-Cre Mir7a2fl/fl and control mice (n = 8–13). (C) Ad libitum–fed blood glucose levels in Rip-Cre Mir7a2fl/fl and control mice (n = 8–13). (D) IPGTT (3 g/kg) in overnight fasted Rip-Cre Mir7a2fl/fl and control mice at 10 weeks of age (n = 11). (E) In vivo insulin excursions in overnight fasted Rip-Cre Mir7a2fl/fl and controls at 15 weeks of age during an IPGTT (n = 6–11). (F) IPITT (0.75 U/kg) in 6-hour fasted Rip-Cre Mir7a2fl/fl and control mice at 11 weeks of age (n = 11). (G) Islet organization of Rip-Cre Mir7a2fl/fl and control pancreas at 10 weeks of age. Shown are staining for insulin and glucagon. Scale bar: 50 μm. (H) Pancreatic β cell mass in 25-week-old Rip-Cre Mir7a2fl/fl and control mice (n = 5–6). (I and J) Static insulin secretion performed with islets from 5- (I) and 35-week-old (J) Rip-Cre Mir7a2fl/fl and control mice (n = 5) at indicated glucose and KCl concentrations. All data are mean ± SEM except I and J (mean ± SD). *P < 0.05; **P < 0.01; ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 5 X users
Referenced in 3 patents
Mentioned by 7 weibo users
Referenced in 1 Wikipedia pages
216 readers on Mendeley
1 readers on CiteULike
See more details