Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration
Chun-Chi Liang, … , Frank Chi, William T. Dauer
Chun-Chi Liang, … , Frank Chi, William T. Dauer
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):3080-3092. https://doi.org/10.1172/JCI72830.
View: Text | PDF
Research Article Article has an altmetric score of 42

TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration

  • Text
  • PDF
Abstract

Lack of a preclinical model of primary dystonia that exhibits dystonic-like twisting movements has stymied identification of the cellular and molecular underpinnings of the disease. The classical familial form of primary dystonia is caused by the DYT1 (ΔE) mutation in TOR1A, which encodes torsinA, AAA+ ATPase resident in the lumen of the endoplasmic reticular/nuclear envelope. Here, we found that conditional deletion of Tor1a in the CNS (nestin-Cre Tor1aflox/–) or isolated CNS expression of DYT1 mutant torsinA (nestin-Cre Tor1aflox/ΔE) causes striking abnormal twisting movements. These animals developed perinuclear accumulation of ubiquitin and the E3 ubiquitin ligase HRD1 in discrete sensorimotor regions, followed by neurodegeneration that was substantially milder in nestin-Cre Tor1aflox/ΔE compared with nestin-Cre Tor1aflox/– animals. Similar to the neurodevelopmental onset of DYT1 dystonia in humans, the behavioral and histopathological abnormalities emerged and became fixed during CNS maturation in the murine models. Our results establish a genetic model of primary dystonia that is overtly symptomatic, and link torsinA hypofunction to neurodegeneration and abnormal twisting movements. These findings provide a cellular and molecular framework for how impaired torsinA function selectively disrupts neural circuits and raise the possibility that discrete foci of neurodegeneration may contribute to the pathogenesis of DYT1 dystonia.

Authors

Chun-Chi Liang, Lauren M. Tanabe, Stephanie Jou, Frank Chi, William T. Dauer

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 Total
Citations: 2 3 6 7 11 8 5 5 12 17 10 5 91
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2020 (8)

Title and authors Publication Year
Improved survival and overt “dystonic” symptoms in a torsinA hypofunction mouse model
F Yokoi, F Jiang, K Dexter, B Salvato, Y Li
Behavioural Brain Research 2020
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease
AJ Rampello, SM Prophet, C Schlieker
Biomolecules 2020
Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington’s disease
G Crevier-Sorbo, VV Rymar, R Crevier-Sorbo, AF Sadikot
Acta Neuropathologica Communications 2020
Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2
AJ Rampello, E Laudermilch, N Vishnoi, SM Prophet, L Shao, C Zhao, CP Lusk, C Schlieker
The Journal of Cell Biology 2020
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia
Y Liu, H Xing, BJ Wilkes, F Yokoi, H Chen, DE Vaillancourt, Y Li
Brain Research Bulletin 2020
Defining research priorities in dystonia
C Lungu, L Ozelius, D Standaert, M Hallett, BA Sieber, C Swanson-Fisher, BD Berman, N Calakos, JC Moore, JS Perlmutter, SE Richardson, R Saunders-Pullman, L Scheinfeldt, N Sharma, R Sillitoe, K Simonyan, PA Starr, A Taylor, J Vitek
Neurology 2020
TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models
J Li, CC Liang, SS Pappas, WT Dauer
eLife 2020
Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice
F Yokoi, J Oleas, H Xing, Y Liu, KM Dexter, C Misztal, M Gerard, I Efimenko, P Lynch, M Villanueva, R Alsina, S Krishnaswamy, DE Vaillancourt, Y Li
Neurobiology of Disease 2020

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 4 news outlets
Blogged by 2
Posted by 2 X users
Referenced in 7 patents
On 1 Facebook pages
92 readers on Mendeley
See more details