Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation
Sunao Takeshita, … , Masako Ito, Kyoji Ikeda
Sunao Takeshita, … , Masako Ito, Kyoji Ikeda
Published August 1, 2013
Citation Information: J Clin Invest. 2013;123(9):3914-3924. https://doi.org/10.1172/JCI69493.
View: Text | PDF
Research Article Bone biology

Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation

  • Text
  • PDF
Abstract

Bone remodeling is characterized by the sequential, local tethering of osteoclasts and osteoblasts and is key to the maintenance of bone integrity. While bone matrix–mobilized growth factors, such as TGF-β, are proposed to regulate remodeling, no in vivo evidence exists that an osteoclast-produced molecule serves as a coupling factor for bone resorption to formation. We found that CTHRC1, a protein secreted by mature bone-resorbing osteoclasts, targets stromal cells to stimulate osteogenesis. Cthrc1 expression was robustly induced when mature osteoclasts were placed on dentin or hydroxyapatite, and also by increasing extracellular calcium. Cthrc1 expression in bone increased in a high-turnover state (such as that induced by RANKL injections in vivo), but decreased in conditions associated with suppressed bone turnover (such as with aging and after alendronate treatment). Targeted deletion of Cthrc1 in mice eliminated Cthrc1 expression in bone, whereas its deficiency in osteoblasts did not exert any significant effect. Osteoclast-specific deletion of Cthrc1 resulted in osteopenia due to reduced bone formation and impaired the coupling process after resorption induced by RANKL injections, impairing bone mass recovery. These data demonstrate that CTHRC1 is an osteoclast-secreted coupling factor that regulates bone remodeling.

Authors

Sunao Takeshita, Toshio Fumoto, Kazuhiko Matsuoka, Kyoung-ae Park, Hiroyuki Aburatani, Shigeaki Kato, Masako Ito, Kyoji Ikeda

×

Figure 6

Impaired coupling function in osteoclast-specific Cthrc1 KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Impaired coupling function in osteoclast-specific Cthrc1 KO mice.
 
(A) ...
(A) Cthrc1, Acp5, Calcr, and Ctsk expression at baseline and after RANKL injection in Cthrc1fl/fl control and ΔOC mice, determined by quantitative RT-PCR. Values were normalized for Gapdh. n = 4. (B) Impaired recovery of 3D BV at 8 weeks after RANKL injection in ΔOC versus Cthrc1fl/fl control mice. Mice were sacrificed at 10 days and 8 weeks after RANKL injections, and 3D-determined BV relative to tissue volume was determined. Representative μCT images at 8 weeks are also shown. Scale bars: 1 mm. n = 8. (C) Urinary CTX excretion was assessed 1 day before (–1) and 2 and 4 days after RANKL injections. Data are normalized for creatinine (Cr). n = 5. (D) Bone histomorphometric analysis was performed at 10 days after RANKL injections. Osteoblast surface (Ob.S), osteoblast number (Ob.N), osteoid surface, and bone formation rate were corrected for bone surface. n = 8. (E) Serum osteocalcin (Ocn) concentrations were determined 10 days after RANKL injections (n = 8). *P < 0.05; **P < 0.01; ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts