Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis
Norma Adán, Jessica Guzmán-Morales, Maria G. Ledesma-Colunga, Sonia I. Perales-Canales, Andrés Quintanar-Stéphano, Fernando López-Barrera, Isabel Méndez, Bibiana Moreno-Carranza, Jakob Triebel, Nadine Binart, Gonzalo Martínez de la Escalera, Stéphanie Thebault, Carmen Clapp
Norma Adán, Jessica Guzmán-Morales, Maria G. Ledesma-Colunga, Sonia I. Perales-Canales, Andrés Quintanar-Stéphano, Fernando López-Barrera, Isabel Méndez, Bibiana Moreno-Carranza, Jakob Triebel, Nadine Binart, Gonzalo Martínez de la Escalera, Stéphanie Thebault, Carmen Clapp
View: Text | PDF
Research Article Inflammation

Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

  • Text
  • PDF
Abstract

Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA.

Authors

Norma Adán, Jessica Guzmán-Morales, Maria G. Ledesma-Colunga, Sonia I. Perales-Canales, Andrés Quintanar-Stéphano, Fernando López-Barrera, Isabel Méndez, Bibiana Moreno-Carranza, Jakob Triebel, Nadine Binart, Gonzalo Martínez de la Escalera, Stéphanie Thebault, Carmen Clapp

×

Figure 7

PRL and Hal prevent joint inflammation in adjuvant-induced arthritis.

Options: View larger image (or click on image) Download as PowerPoint
PRL and Hal prevent joint inflammation in adjuvant-induced arthritis.
(A...
(A) Experimental design diagram: osmotic minipumps delivering PRL or subcutaneous tablets releasing Hal were implanted 3 days before the injection of CFA in rats. (B) Representative photographs of hind paws from groups injected or not with CFA. (C and F) Time course of ankle circumference in groups infused with PRL (n = 10) or treated with Hal (n = 16) under control and CFA-injected conditions. (C) Days 15, 18, and 21, P < 0.001, CFA vs. control. Days 18 and 21, P < 0.001, PRL vs. PRL plus CFA. (F) Days 15 and 18, P < 0.001, CFA vs. control. Days 12, 15, 18, and 21, P < 0.001, CFA vs. Hal plus CFA. (D and G) Nociceptive threshold in groups infused with PRL (n = 5–9) or treated with Hal (n = 5–9). (E and H) qRT-PCR–based quantification of Infg, Il6, iNos, Il1b, and Tnfa mRNA levels in ankle joints from rats treated with PRL (n = 3–10) or with Hal (n = 3–10) under control and CFA-injected conditions on day 21 after CFA. Bars are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts