Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
C/EBPγ deregulation results in differentiation arrest in acute myeloid leukemia
Meritxell Alberich-Jordà, … , Ruud Delwel, Daniel G. Tenen
Meritxell Alberich-Jordà, … , Ruud Delwel, Daniel G. Tenen
Published November 19, 2012
Citation Information: J Clin Invest. 2012;122(12):4490-4504. https://doi.org/10.1172/JCI65102.
View: Text | PDF | Corrigendum
Research Article Oncology

C/EBPγ deregulation results in differentiation arrest in acute myeloid leukemia

  • Text
  • PDF
Abstract

C/EBPs are a family of transcription factors that regulate growth control and differentiation of various tissues. We found that C/EBPγ is highly upregulated in a subset of acute myeloid leukemia (AML) samples characterized by C/EBPα hypermethylation/silencing. Similarly, C/EBPγ was upregulated in murine hematopoietic stem/progenitor cells lacking C/EBPα, as C/EBPα mediates C/EBPγ suppression. Studies in myeloid cells demonstrated that CEBPG overexpression blocked neutrophilic differentiation. Further, downregulation of Cebpg in murine Cebpa-deficient stem/progenitor cells or in human CEBPA-silenced AML samples restored granulocytic differentiation. In addition, treatment of these leukemias with demethylating agents restored the C/EBPα-C/EBPγ balance and upregulated the expression of myeloid differentiation markers. Our results indicate that C/EBPγ mediates the myeloid differentiation arrest induced by C/EBPα deficiency and that targeting the C/EBPα-C/EBPγ axis rescues neutrophilic differentiation in this unique subset of AMLs.

Authors

Meritxell Alberich-Jordà, Bas Wouters, Martin Balastik, Clara Shapiro-Koss, Hong Zhang, Annalisa DiRuscio, Hanna S. Radomska, Alexander K. Ebralidze, Giovanni Amabile, Min Ye, Junyan Zhang, Irene Lowers, Roberto Avellino, Ari Melnick, Maria E. Figueroa, Peter J.M. Valk, Ruud Delwel, Daniel G. Tenen

×

Figure 6

Downregulation of C/EBPγ in human AML cells restores neutrophilic differentiation in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Downregulation of C/EBPγ in human AML cells restores neutrophilic differ...
(A) Bone marrow analysis of NSG recipient mice 16 weeks after transplantation of human AML cells. Plots represent 2 individual mice transplanted with 1.25 × 106 cells infected with either NSC (nonsilencing control) shRNA lentivirus (n = 2) or a specific human C/EBPγ shRNA lentivirus (n = 2). Plots are gated for human CD45+ cells and divided by means of GFP: GFP– (noninfected) and GFP+ (infected cells). Images show human CD33 and CD15 expression and indicate the percentage of cells in each quadrant. (B) Cell morphology on Wright-Giemsa–stained cytospins of sorted human CD45+ mononuclear cells according to GFP levels. Original magnification, ×100.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts