Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamic visualization of RANKL and Th17-mediated osteoclast function
Junichi Kikuta, … , Ronald N. Germain, Masaru Ishii
Junichi Kikuta, … , Ronald N. Germain, Masaru Ishii
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):866-873. https://doi.org/10.1172/JCI65054.
View: Text | PDF
Technical Advance Bone biology Article has an altmetric score of 11

Dynamic visualization of RANKL and Th17-mediated osteoclast function

  • Text
  • PDF
Abstract

Osteoclasts are bone resorbing, multinucleate cells that differentiate from mononuclear macrophage/monocyte-lineage hematopoietic precursor cells. Although previous studies have revealed important molecular signals, how the bone resorptive functions of such cells are controlled in vivo remains less well characterized. Here, we visualized fluorescently labeled mature osteoclasts in intact mouse bone tissues using intravital multiphoton microscopy. Within this mature population, we observed cells with distinct motility behaviors and function, with the relative proportion of static – bone resorptive (R) to moving – nonresorptive (N) varying in accordance with the pathophysiological conditions of the bone. We also found that rapid application of the osteoclast-activation factor RANKL converted many N osteoclasts to R, suggesting a novel point of action in RANKL-mediated control of mature osteoclast function. Furthermore, we showed that Th17 cells, a subset of RANKL-expressing CD4+ T cells, could induce rapid N-to-R conversion of mature osteoclasts via cell-cell contact. These findings provide new insights into the activities of mature osteoclasts in situ and identify actions of RANKL-expressing Th17 cells in inflammatory bone destruction.

Authors

Junichi Kikuta, Yoh Wada, Toshiyuki Kowada, Ze Wang, Ge-Hong Sun-Wada, Issei Nishiyama, Shin Mizukami, Nobuhiko Maiya, Hisataka Yasuda, Atsushi Kumanogoh, Kazuya Kikuchi, Ronald N. Germain, Masaru Ishii

×

Figure 1

Visualization of living mature osteoclasts on the endosteum by using intravital multiphoton microscopy.

Options: View larger image (or click on image) Download as PowerPoint
Visualization of living mature osteoclasts on the endosteum by using int...
(A) A representative image of live bone imaging of a3-GFP mice in control conditions. Green, mature osteoclasts expressing GFP-fused V-type H+-ATPase a3 subunit; blue, bone surface. Scale bar: 40 μm. Arrowheads and asterisks represent surface and cytoplasmic distribution of V-type H+-ATPase a3 subunit, respectively. (B and C) Magnified images of 2 types of representative mature osteoclasts. White lines, cell borders. Scale bars: 10 μm. (D) Cell shapes were automatically recognized by the image analysis software, and 3 distinct areas were defined: occupied in the initial time frame (t = 0) (A, red), occupied in the final time frame (t = 10) (C, yellow), and overlapping between the 2 time frames (B, green). CDI was calculated as (A+C)/(A+B), representing the ratio of areas changed during 10 minutes divided by total cell area at t = 0 (see details in Supplemental Figure 2). (E and F) Processed images for CDI calculation (E for B, and F for C, respectively). Actual values of CDI were shown in upper right corners in E and F. Scale bars: 10 μm. (G) Examples of time-dependent transitions of CDIs. Each symbol represents a different cell tracked over a period of 40 minutes. Some cells changed their CDIs from lower to higher or vice versa (black symbols), whereas others remained in the similar CDI (white symbols). (H) Histogram of CDIs of mature osteoclasts under control conditions (n = 259, collected from 5 independent experiments).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 1 X users
Mentioned in 1 Google+ posts
130 readers on Mendeley
See more details