Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies resistant to current chemotherapies or radiotherapies, which makes it urgent to identify new therapeutic targets for HCC. In this study, we found that checkpoint kinase 1 (CHK1) was frequently overexpressed and correlated with poor clinical outcome in patients with HCC. We further showed that the CHK1 inhibitor GÖ6976 was capable of sensitizing HCC cells to cisplatin, indicating that CHK1 may have oncogenic function in HCC. We found that CHK1 phosphorylated the tumor suppressor spleen tyrosine kinase (L) (SYK[L]) and identified the phosphorylation site at Ser295. Furthermore, CHK1 phosphorylation of SYK(L) promoted its subsequent proteasomal degradation. Expression of a nonphosphorylated mutant of SYK(L) was more efficient at suppressing proliferation, colony formation, mobility, and tumor growth in HCC lines. Importantly, a strong inverse correlation between the expression levels of CHK1 and SYK(L) was observed in patients with HCC. Collectively, our data demonstrate that SYK(L) is a substrate of CHK1 in tumor cells and suggest that targeting the CHK1/SYK(L) pathway may be a promising strategy for treating HCC.
Jian Hong, Kaishun Hu, Yunfei Yuan, Yi Sang, Qiangui Bu, Guihua Chen, Longjun Yang, Binkui Li, Pinzhu Huang, Dongtai Chen, Yi Liang, Ruhua Zhang, Jingxuan Pan, Yi-Xin Zeng, Tiebang Kang