Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice
Megan Podowski, … , Robert Wise, Enid Neptune
Megan Podowski, … , Robert Wise, Enid Neptune
Published December 19, 2011
Citation Information: J Clin Invest. 2012;122(1):229-240. https://doi.org/10.1172/JCI46215.
View: Text | PDF
Research Article Development Article has an altmetric score of 18

Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β–specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β–targeted therapies for patients with COPD.

Authors

Megan Podowski, Carla Calvi, Shana Metzger, Kaori Misono, Hataya Poonyagariyagorn, Armando Lopez-Mercado, Therese Ku, Thomas Lauer, Sharon McGrath-Morrow, Alan Berger, Christopher Cheadle, Rubin Tuder, Harry C. Dietz, Wayne Mitzner, Robert Wise, Enid Neptune

×

Figure 6

Effects of losartan on matrix metalloprotease activity and expression.

Options: View larger image (or click on image) Download as PowerPoint
Effects of losartan on matrix metalloprotease activity and expression.
(...
(A) Zymography of lung extracts from representative mice with designated exposures and treatments. The top band (black arrowhead) denotes MMP9, and the lower band (gray arrowhead) denotes MMP2. The positive (+) control data represents recombinant mouse MMP9. The lanes were run on the same gel but are noncontiguous. n = 4–8 mice per treatment. (B) Densitometry of MMP9 zymography bands. n = 4–8 mice per treatment. (C) Western blot analysis of MMP12 expression in lung lysates from mice exposed to RA, CS, or CS plus losartan. MMP12 and β-actin bands are shown. n = 4–6 mice per condition. (D) Elastin localization by Hart’s stain with and without tartrazine counterstaining. Arrows in the top and middle rows show linear deposition of elastin in alveolar walls of RA-exposed mice, and arrowheads show dense, discontinuous deposition in walls in CS-exposed mice. The latter is improved with losartan treatment (arrow). Note that pale staining in airspaces reflects residual agarose in lungs. Scale bar: 50 μm. n = 4–6 mice per condition.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 1 policy sources
Posted by 6 X users
Mentioned in 1 Google+ posts
Highlighted by 1 platforms
88 readers on Mendeley
See more details