Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras
Lee Adam Wheeler, … , Derek M. Dykxhoorn, Judy Lieberman
Lee Adam Wheeler, … , Derek M. Dykxhoorn, Judy Lieberman
Published May 16, 2011
Citation Information: J Clin Invest. 2011;121(6):2401-2412. https://doi.org/10.1172/JCI45876.
View: Text | PDF
Research Article AIDS/HIV Article has an altmetric score of 14

Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras

  • Text
  • PDF
Abstract

The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission.

Authors

Lee Adam Wheeler, Radiana Trifonova, Vladimir Vrbanac, Emre Basar, Shannon McKernan, Zhan Xu, Edward Seung, Maud Deruaz, Tim Dudek, Jon Ivar Einarsson, Linda Yang, Todd M. Allen, Andrew D. Luster, Andrew M. Tager, Derek M. Dykxhoorn, Judy Lieberman

×

Figure 1

Cy3-labeled CD4-AsiCs are internalized by CD4+ cells and silence CCR5 expression in vitro.

Options: View larger image (or click on image) Download as PowerPoint
Cy3-labeled CD4-AsiCs are internalized by CD4+ cells and silence CCR5 ex...
(A) Design of CD4-AsiC, containing a CD4 aptamer and a CCR5 siRNA. (B and C) CD4-AsiCs or PSMA-AsiCs targeting CCR5 were Cy3 labeled at the 3′ end of the antisense siRNA strand and incubated with primary CD4+ T lymphocytes from a healthy donor. Uptake was assessed 24 hours later by flow cytometry (B) and fluorescence microscopy (C; original magnification, ×60). Data are representative of 3 independent experiments. MFI of each peak is shown (mock, blue; treated, red). Transfection controls used nucleofection. (D) Specific siRNA delivery to CD4+ cells in a mixed population of resting PBMCs was assessed by flow cytometry 24 hours after incubation with 4 μM Cy3-labeled AsiCs. In the absence of oligofectamine (OF), Cy3-labeled CD4-AsiCs were preferentially taken up by CD3+CD4+ T cells and CD4+CD14+ monocytes, whereas PSMA-AsiCs only transfected monocytes with OF. CD3+CD8+ T cells remained relatively label free. Representative dot plots of 3 experiments with different donors are shown. (E and F) To test for gene silencing, CD4+ T lymphocytes were treated with CD4-AsiCs or PSMA-AsiCs targeting CCR5, with or without transfection. Chimeras bearing scrambled siRNAs (Scr) and CD4 aptamers served as controls. Shown are mean ± SEM MFI normalized to the mock-treated sample (E; n = 4; *P < 0.005, **P < 0.0005, ***P < 0.00005, 2-tailed t test) and representative histograms (F; mock, blue; treated, red). In the absence of nucleofection, CCR5 was knocked down only by CCR5 CD4-AsiCs.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 19 patents
159 readers on Mendeley
See more details