In cultured renal cells, hypertonicity activates multiple mitogen-activated protein kinases (MAPKs) and enhances the expression of heat shock proteins (HSPs). In rats, 24 h water restriction increased mean urinary osmolality (Uosm) from 2, 179+/-153 mOsm/kg to 2,944+/-294 mOsm/kg (P < 0.001) and was associated with significant (P < 0.05) increases in the papillary activity of c-Jun NH2-terminal protein kinase (JNK) by 22%, extracellular signal-regulated protein kinase (ERK) by 49%, and p38 MAPK by 15%. Conversely, 24 h of water-loading (Uosm 473+/-33 mOsm/kg) caused suppression of JNK activity by 43% (P < 0.001), ERK by 39% (P < 0.05), and p38 MAPK by 26% (P < 0.05). No such modulation was observed in the isotonic cortex. c-Jun phosphorylation was decreased in papilla from water-loaded rats by 45% versus controls. Expression of Hsp 110, inducible Hsp 70, and Hsp 25 was greater in the hyperosmotic papilla than the isosmotic cortex but was not affected by the animal's hydration state. In cultured inner medullary collecting duct cells, HSP expression was maximal at 500 mOsm/kg, while activation of JNK continued to increase. We conclude that under basal conditions of hydration, these HSPs are maximally expressed in the hypertonic inner medulla, while the activation of all three members of the MAPK family approaches but is not maximal.
P A Wojtaszek, L E Heasley, T Berl