Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome–like phenotype and hyperactivated MAPK signaling in humans and mice
Michael Kraft, … , Anita Rauch, Christian Thomas Thiel
Michael Kraft, … , Anita Rauch, Christian Thomas Thiel
Published August 1, 2011
Citation Information: J Clin Invest. 2011;121(9):3479-3491. https://doi.org/10.1172/JCI43428.
View: Text | PDF
Research Article Cardiology Article has an altmetric score of 1

Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome–like phenotype and hyperactivated MAPK signaling in humans and mice

  • Text
  • PDF
Abstract

Epigenetic regulation of gene expression, through covalent modification of histones, is a key process controlling growth and development. Accordingly, the transcription factors regulating these processes are important targets of genetic diseases. However, surprisingly little is known about the relationship between aberrant epigenetic states, the cellular process affected, and their phenotypic consequences. By chromosomal breakpoint mapping in a patient with a Noonan syndrome–like phenotype that encompassed short stature, blepharoptosis, and attention deficit hyperactivity disorder, we identified haploinsufficiency of the histone acetyltransferase gene MYST histone acetyltransferase (monocytic leukemia) 4 (MYST4), as the underlying cause of the phenotype. Using acetylation, whole genome expression, and ChIP studies in cells from the patient, cell lines in which MYST4 expression was knocked down using siRNA, and the Myst4 querkopf mouse, we found that H3 acetylation is important for neural, craniofacial, and skeletal morphogenesis, mainly through its ability to specifically regulating the MAPK signaling pathway. This finding further elucidates the complex role of histone modifications in mammalian development and adds what we believe to be a new mechanism to the pathogenic phenotypes resulting from misregulation of the RAS signaling pathway.

Authors

Michael Kraft, Ion Cristian Cirstea, Anne Kathrin Voss, Tim Thomas, Ina Goehring, Bilal N. Sheikh, Lavinia Gordon, Hamish Scott, Gordon K. Smyth, Mohammad Reza Ahmadian, Udo Trautmann, Martin Zenker, Marco Tartaglia, Arif Ekici, André Reis, Helmuth-Guenther Dörr, Anita Rauch, Christian Thomas Thiel

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2009 Total
Citations: 2 8 6 6 3 4 2 4 6 6 6 7 3 5 1 1 70
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2023 (6)

Title and authors Publication Year
Tctp, a unique Ing5-binding partner, inhibits the chromatin binding of Enok in Drosophila
Kim LH, Kim JY, Xu YY, Lim MA, Koo BS, Kim JH, Yoon SE, Kim YJ, Choi KW, Chang JW, Hong ST
Proceedings of the National Academy of Sciences 2023
Clinical features and underlying mechanisms of KAT6B disease in a Chinese boy
Sun X, Luo X, Lin L, Wang S, Wang C, Yuan F, Lan X, Yan J, Chen Y
Molecular Genetics & Genomic Medicine 2023
Clinical heterogeneity of polish patients with KAT6B-related disorder.
Magdalena K, Anna BT, Anna LB, Aleksandra JS, Krzysztof S, Malgorzata KW, Elzbieta C, Magdalena P, Dorota J, Piotr S, Agnieszka ZK, Małgorzata R, Rafal P, Robert S
Molecular Genetics & Genomic Medicine 2023
Forebrain excitatory neuron-specific loss of Brpf1 attenuates excitatory synaptic transmission and impairs spatial and fear memory
Zhao B, Zhang H, Liu Y, Zu G, Zhang Y, Hu J, Liu S, You L
Neural Regeneration Research 2023
Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton
DeLorenzo L, Powder KE
Evolution & Development 2023
Epigenetic Regulation of Craniofacial Development and Disease
Lomeli C. S, Kristin B. A
Birth Defects Research Part A Clinical and Molecular Teratology 2023

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
87 readers on Mendeley
See more details