Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Enabling stem cell therapies through synthetic stem cell–niche engineering
Raheem Peerani, Peter W. Zandstra
Raheem Peerani, Peter W. Zandstra
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(1):60-70. https://doi.org/10.1172/JCI41158.
View: Text | PDF
Review Series

Enabling stem cell therapies through synthetic stem cell–niche engineering

  • Text
  • PDF
Abstract

Enabling stem cell–targeted therapies requires an understanding of how to create local microenvironments (niches) that stimulate endogenous stem cells or serve as a platform to receive and guide the integration of transplanted stem cells and their derivatives. In vivo, the stem cell niche is a complex and dynamic unit. Although components of the in vivo niche continue to be described for many stem cell systems, how these components interact to modulate stem cell fate is only beginning to be understood. Using the HSC niche as a model, we discuss here microscale engineering strategies capable of systematically examining and reconstructing individual niche components. Synthetic stem cell–niche engineering may form a new foundation for regenerative therapies.

Authors

Raheem Peerani, Peter W. Zandstra

×

Figure 2

Dynamic interactions between HSCs and the niche.

Options: View larger image (or click on image) Download as PowerPoint
Dynamic interactions between HSCs and the niche.
In both the developing ...
In both the developing embryo (A) and the adult (B), HSC niches vary in time, location, and composition. The HSCs and their interactions with their current niche may provide the required signals to induce de novo hematopoiesis, maturation, or migration into the subsequent niche. In the adult, evidence suggests that HSCs reside in both endosteal and vascular niches that provide different molecular cues to regulate HSC quiescence and response to injury. There is still considerable controversy about the composition and role(s) of niche components and regulatory mechanisms active in the adult and embryonic HSC niches.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts