Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chemical modification: the key to clinical application of RNA interference?
David R. Corey
David R. Corey
Published December 3, 2007
Citation Information: J Clin Invest. 2007;117(12):3615-3622. https://doi.org/10.1172/JCI33483.
View: Text | PDF
Review Series

Chemical modification: the key to clinical application of RNA interference?

  • Text
  • PDF
Abstract

RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity.

Authors

David R. Corey

×

Figure 1

(A) siRNAs are double-stranded RNAs approximately 20 base-pairs in length.

Options: View larger image (or click on image) Download as PowerPoint
(A) siRNAs are double-stranded RNAs approximately 20 base-pairs in lengt...
The duplex shown has staggered ends capped with two thymidines to improve resistance to digestion by nucleases. This is a traditional design, but it is possible to have blunt-ended duplexes, and the thymidines can be omitted. (B) Duplex siRNAs enter cells and bind to the RISC. The RISC proteins unravel the duplex and facilitate the search for mRNA sequences that are complementary to one of the RNA strands. Upon recognition of a complementary mRNA, RISC cleaves the mRNA and prevents translation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts