Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pharmacological manipulation of Bcl-2 family members to control cell death
Anthony Letai
Anthony Letai
Published October 3, 2005
Citation Information: J Clin Invest. 2005;115(10):2648-2655. https://doi.org/10.1172/JCI26250.
View: Text | PDF
Review Series

Pharmacological manipulation of Bcl-2 family members to control cell death

  • Text
  • PDF
Abstract

The commitment to programmed cell death involves complex interactions among pro- and antiapoptotic members of the Bcl-2 family of proteins. The physiological result of a decision by these proteins to undergo cell death is permeabilization of the mitochondrial outer membrane. Pharmacologic manipulation of proteins in this family appears both feasible and efficacious, whether the goal is decreased cell death, as in ischemia of the myocardium or brain, or increased cell death, as in cancer.

Authors

Anthony Letai

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
A model of Bcl-2 family member control over programmed cell death. In re...
A model of Bcl-2 family member control over programmed cell death. In response to myriad death, damage, or derangement signals, BH3-only family members are activated (i). Activator BH3-only proteins interact with multidomain proapoptotic Bax and/or Bak (Bax/Bak), inducing their oligomerization (ii) and thus resulting in MOMP, release of cytochrome c, apoptosome formation, and caspase activation (iii). Bcl-2 and other multidomain antiapoptotic proteins interrupt the death signal by binding and sequestering activator BH3-only family members, and perhaps also Bax/Bak (iv). Bcl-2 antiapoptotic function may be antagonized by the competitive displacement of activator BH3-only molecules by sensitizer BH3-only proteins (v).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts