Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer
Oumeya Adjali, … , Naomi Taylor, David Klatzmann
Oumeya Adjali, … , Naomi Taylor, David Klatzmann
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2287-2295. https://doi.org/10.1172/JCI23966.
View: Text | PDF
Research Article Genetics Article has an altmetric score of 3

In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer

  • Text
  • PDF
Abstract

SCID patients have been successfully treated by administration of ex vivo gene-corrected stem cells. However, despite its proven efficacy, such treatment carries specific risks and difficulties. We hypothesized that some of these drawbacks may be overcome by in situ gene correction of T lymphoid progenitors in the thymus. Indeed, in vivo intrathymic transfer of a gene that provides a selective advantage for transduced prothymocytes should result in the generation of functional T lymphocyte progeny, allowing long-term immune reconstitution. We assessed the feasibility of this approach in a murine model of ZAP-70–deficient SCID. A T cell–specific ZAP-70–expressing lentiviral vector was injected into thymi of adult ZAP-70–/– mice without prior conditioning. This resulted in the long-term differentiation of mature TCR-αβ+ thymocytes, indicating that the vector had integrated into progenitor cells. Moreover, peripheral ZAP-70–expressing T cells demonstrated a partially diversified receptor repertoire and were responsive to alloantigens in vitro and in vivo. Improved treatment efficacy was achieved in infant ZAP-70–/– mice, in which the thymus is proportionately larger and a higher percentage of prothymocytes are in cycle. Thus, intrathymic injection of a lentiviral vector could represent a simplified and potentially safer alternative to ex vivo gene-modified hematopoietic stem cell transplantation for gene therapy of T cell immunodeficiencies.

Authors

Oumeya Adjali, Gilles Marodon, Marcos Steinberg, Cédric Mongellaz, Véronique Thomas-Vaslin, Chantal Jacquet, Naomi Taylor, David Klatzmann

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
In vitro and in vivo responsiveness of T lymphocytes reconstituted by IT...
In vitro and in vivo responsiveness of T lymphocytes reconstituted by IT injection of pT-ZAP. (A) Splenocytes from ZAP-70–/–, WT, and IT-reconstituted ZAP-70–/– mice were labeled with the fluorescent dye CFSE and cultured in vitro in the presence of concanavalin A (Con A) or αCD3/IL-2 for 3 days. Cells were analyzed for CFSE intensity by flow cytometry. The numbers shown above the peaks indicate the number of cell divisions. The IT-reconstituted ZAP-70 mice were sacrificed at 8 weeks after injection. (B) Histological sections of syngeneic (C57BL/6) and allogeneic (BALB/c) skin sections, which had both been grafted on the same IT-reconstituted ZAP-70 mouse, were stained with H&E. The presence of lymphocytes (shown as dark purple staining) infiltrating into the epidermis is shown in the enlarged inset. The IT-reconstituted mouse was injected 14 weeks prior to skin grafting, and skin histology was performed 30 days later. Magnification, ×200. (C) Lymph node cells from WT (C57BL/6) and IT-reconstituted ZAP-70 mice (pregrafted as described above; sacrificed at 6 weeks after graft) were labeled with CFSE and cultured in the absence or presence of allogeneic BALB/c splenocytes. After 3 days, cells were stained with an αCD4 mAb, and the percentages of CD4+ cells that divided, as assessed by a loss of CFSE intensity, are indicated in each dot plot. MLR, mixed lymphocyte reaction.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
43 readers on Mendeley
See more details