Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency, and bony abnormalities with an increased risk of myeloid neoplasia. Almost all cases of SDS result from biallelic mutations in SBDS. SBDS interacts with EFL1 to displace EIF6 from the 60S ribosomal subunit. Released EIF6 permits the assembly of ribosomal large and small subunits in the cytoplasm. Decreased EIF6 levels due to haploinsufficiency or missense mutations which lead to decreased protein expression may provide a somatic genetic rescue and anti-leukemic effects. We observed accumulation of EIF6 protein in sbds knockout (KO) zebrafish models, confirmed in patient-derived tissues, and correlated with changes in ribosome proteins and TP53 pathways. The mechanism of action for this adaptive response is unknown. To address this, we generated an eif6 zebrafish KO line which do not survive past 10 days post fertilization. We also created two mutants with low Eif6 expression, 5-25% of the wildtype levels, that can survive until adulthood. We bred them with sbds-null strains and analyzed their phenotype and biochemical properties. Low Eif6 levels reduced Tp53 pathway activation but did not rescue neutropenia in Sbds-deficient zebrafish. Further studies elucidating the interplay between SBDS, EIF6, TP53, and cellular stress responses offer promising insights into SDS pathogenesis, somatic genetic rescue, and therapeutic strategies.
Usua Oyarbide, Valentino Bezzerri, Morgan Staton, Christian Boni, Arish Shah, Marco Cipolli, Eliezer Calo, Seth J. Corey
Usage data is cumulative from February 2025 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 996 | 0 |
302 | 0 | |
Supplemental data | 134 | 0 |
Citation downloads | 19 | 0 |
Totals | 1,451 | 0 |
Total Views | 1,451 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.