Productively infected cells are generally thought to arise from HIV infection of activated CD4+ T cells, and these infected activated cells are thought to be a recurring source of latently infected cells when a portion of the population transitions to a resting state. We discovered and report here that productively and latently infected cells can instead originate from direct infection of resting CD4+ T cell populations in lymphoid tissues in Fiebig I, the earliest stage of detectable HIV infection. We found that direct infection of resting CD4+ T cells was correlated with the availability of susceptible target cells in lymphoid tissues largely restricted to resting CD4+ T cells in which expression of pTEFb enabled productive infection, and we documented persistence of HIV-producing resting T cells during antiretroviral therapy (ART). Thus, we provide evidence of a mechanism by which direct infection of resting T cells in lymphoid tissues to generate productively and latently infected cells creates a mechanism by which the productively infected cells can replenish both populations and maintain two sources of virus from which HIV infection can rebound, even if ART is instituted at the earliest stage of detectable infection.
Stephen W. Wietgrefe, Jodi Anderson, Lijie Duan, Peter J. Southern, Paul Zuck, Guoxin Wu, Bonnie J. Howell, Cavan Reilly, Eugène Kroon, Suthat Chottanapund, Supranee Buranapraditkun, Carlo Sacdalan, Nicha Tulmethakaan, Donn J. Colby, Nitiya Chomchey, Peeriya Prueksakaew, Suteeraporn Pinyakorn, Rapee Trichavaroj, Julie L. Mitchell, Lydie Trautmann, Denise Hsu, Sandhya Vasan, Sopark Manasnayakorn, Mark de Souza, Sodsai Tovanabutra, Alexandra Schuetz, Merlin L. Robb, Nittaya Phanuphak, Jintanat Ananworanich, Timothy W. Schacker, Ashley T. Haase, on behalf of the RV254/SEARCH 010 Study Team
Title and authors | Publication | Year |
---|---|---|
Anatomical, subset, and HIV-dependent expression of viral sensors and restriction factors
George AF, Neidleman J, Luo X, Frouard J, Elphick N, Yin K, Young KC, Ma T, Andrew AK, Ezeonwumelu IJ, Pedersen JG, Chaillon A, Porrachia M, Woodworth B, Jakobsen MR, Thomas R, Smith DM, Gianella S, Roan NR |
Cell reports | 2025 |
Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead?
Xiao Q, He S, Wang C, Zhou Y, Zeng C, Liu J, Liu T, Li T, Quan X, Wang L, Zhai L, Liu Y, Li J, Zhang X, Liu Y |
Biomolecules | 2025 |
Mucosal Immunity in Acute HIV: A Review of Recent Work
Shacklett BL |
Current opinion in HIV and AIDS | 2025 |
Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis.
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B |
International journal of molecular sciences | 2024 |
The cell biology of HIV-1 latency and rebound.
Mbonye U, Karn J |
Retrovirology | 2024 |
ISG15–LFA1 interactions in latent HIV clearance: mechanistic implications in designing antiviral therapies
Koka PS, Ramdass B |
Frontiers in Cell and Developmental Biology | 2024 |