Cystinosis is a lysosomal storage disease that is characterized by the accumulation of dipeptide cystine within the lumen. It is caused by mutations in the cystine exporter, cystinosin. Most of the clinically reported mutations are due to the loss of transporter function. In this study, we identified a rapidly degrading disease variant, referred to as cystinosin(7Δ). We demonstrated that this mutant is retained in the ER and degraded via the ER-associated degradation (ERAD) pathway. Using genetic and chemical inhibition methods, we elucidated the roles of HRD1, p97, EDEMs, and the proteasome complex in cystinosin(7Δ) degradation pathway. Having understood the degradation mechanisms, we tested some chemical chaperones previously used for treating CFTR F508Δ and demonstrated that they could facilitate the folding and trafficking of cystinosin(7Δ). Strikingly, chemical chaperone treatment can reduce the lumenal cystine level by approximately 70%. We believe that our study conclusively establishes the connection between ERAD and cystinosis pathogenesis and demonstrates the possibility of using chemical chaperones to treat cystinosin(7Δ).
Varsha Venkatarangan, Weichao Zhang, Xi Yang, Jess Thoene, Si Houn Hahn, Ming Li
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.