Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
HIF-2α expression and metabolic signaling require ACSS2 in clear cell renal cell carcinoma
Zachary A. Bacigalupa, Emily N. Arner, Logan M. Vlach, Melissa M. Wolf, Whitney A. Brown, Evan S. Krystofiak, Xiang Ye, Rachel A. Hongo, Madelyn Landis, Edith K. Amason, Kathryn E. Beckermann, W. Kimryn Rathmell, Jeffrey C. Rathmell
Zachary A. Bacigalupa, Emily N. Arner, Logan M. Vlach, Melissa M. Wolf, Whitney A. Brown, Evan S. Krystofiak, Xiang Ye, Rachel A. Hongo, Madelyn Landis, Edith K. Amason, Kathryn E. Beckermann, W. Kimryn Rathmell, Jeffrey C. Rathmell
View: Text | PDF
Research Article Cell biology Metabolism

HIF-2α expression and metabolic signaling require ACSS2 in clear cell renal cell carcinoma

  • Text
  • PDF
Abstract

Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α–targeted therapies and deplete pathogenically stabilized HIF-2α.

Authors

Zachary A. Bacigalupa, Emily N. Arner, Logan M. Vlach, Melissa M. Wolf, Whitney A. Brown, Evan S. Krystofiak, Xiang Ye, Rachel A. Hongo, Madelyn Landis, Edith K. Amason, Kathryn E. Beckermann, W. Kimryn Rathmell, Jeffrey C. Rathmell

×

Figure 1

ccRCC tumors have robust ACSS2 expression in cancer cells.

Options: View larger image (or click on image) Download as PowerPoint
ccRCC tumors have robust ACSS2 expression in cancer cells.
(A) Uniform m...
(A) Uniform manifold approximation and projection (UMAP) plot depicting tumor cell lineage with lymphoid (blue), myeloid (orange), normal tissue (green), and tumor (red) represented. Data were normalized to 10,000 reads per cell using Seurat-Scanpy method, then converted to log scale. Inset focuses on large clusters of normal tissue and tumor. (B) UMAP plot (same as in A) depicting ACSS2 expression with intensity scored from 0 (purple) to 10 (yellow). Inset focuses on large clusters of normal tissue and tumor. (C) Representative images from tissue microarray immunofluorescence staining for ACSS2 (green), HIF-2α (red), AE1/AE3 (cyan), and merge with DAPI (blue). Scale bars: 20 μm. Bar graph shows the expression of ACSS2 and HIF-2α as a percentage of each respective sample (n = 159). (D) Pearson’s correlation plot for ACSS2 and HIF-2α. (E) Pearson’s correlation plot for ACSS2 and AE1/AE3.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts