Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell–mediated antitumor immunity
Xiaoxin Ren, … , Deyou Zheng, Xingxing Zang
Xiaoxin Ren, … , Deyou Zheng, Xingxing Zang
Published November 15, 2022
Citation Information: J Clin Invest. 2022;132(22):e163620. https://doi.org/10.1172/JCI163620.
View: Text | PDF
Research Article Immunology Oncology Article has an altmetric score of 502

Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell–mediated antitumor immunity

  • Text
  • PDF
Abstract

Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell–based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.

Authors

Xiaoxin Ren, Mou Peng, Peng Xing, Yao Wei, Phillip M. Galbo Jr., Devin Corrigan, Hao Wang, Yingzhen Su, Xiaoshen Dong, Qizhe Sun, Yixian Li, Xiaoyu Zhang, Winfried Edelmann, Deyou Zheng, Xingxing Zang

×

Total citations by year

Year: 2025 2024 2023 Total
Citations: 6 9 9 24
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2024 (9)

Title and authors Publication Year
TMIGD2 is a new and effective costimulatory domain in CAR-T cells treating human solid tumors
Christopher Nishimura, Devin Corrigan, Xiang Zheng, Phillip Galbo Jr, Shan Wang, Yao Liu, Yao Wei, Linna Suo, Wei Cui, Nadia Mercado, Deyou Zheng, Chengcheng Zhang, Xingxing Zang
Science Advances 2024
High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: implications for natural killer cell instillation after transurethral resection of bladder tumor.
Wang F, Zhang G, Xu T, Ma J, Wang J, Liu S, Tang Y, Jin S, Li J, Xing N
Journal of experimental & clinical cancer research : CR 2024
Mechanism study of tyrosine phosphatase shp-1 in inhibiting hepatocellular carcinoma progression by regulating the SHP2/GM-CSF pathway in TAMs.
Wei Q, Luo S, He G
Scientific Reports 2024
HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis
Peris Sempere V, Luo G, Muñiz-Castrillo S, Pinto AL, Picard G, Rogemond V, Titulaer MJ, Finke C, Leypoldt F, Kuhlenbäumer G, Jones HF, Dale RC, Binks S, Irani SR, Bastiaansen AE, de Vries JM, de Bruijn MA, Roelen DL, Kim TJ, Chu K, Lee ST, Kanbayashi T, Pollock NR, Kichula KM, Mumme-Monheit A, Honnorat J, Norman PJ, Mignot E
Frontiers in immunology 2024
Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT
Frontiers in Immunology 2024
Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N
Cancer immunology research 2024
Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization
Chen S, Zhu H, Jounaidi Y
Signal Transduction and Targeted Therapy 2024
Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S
Journal of Pharmaceutical Analysis 2024
Exploring the Immunoresponse in Bladder Cancer Immunotherapy
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A
Cells 2024

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 64 news outlets
Blogged by 3
Posted by 26 X users
Referenced in 1 patents
On 1 Facebook pages
47 readers on Mendeley
See more details