Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

ER-to-Golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity
Stephanie Kim, … , David Ginsburg, Pavan Reddy
Stephanie Kim, … , David Ginsburg, Pavan Reddy
Published January 19, 2021
Citation Information: J Clin Invest. 2021;131(2):e136574. https://doi.org/10.1172/JCI136574.
View: Text | PDF
Research Article Cell biology Immunology Article has an altmetric score of 17

ER-to-Golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity

  • Text
  • PDF
Abstract

T cell–mediated responses are dependent on their secretion of key effector molecules. However, the critical molecular determinants of the secretion of these proteins are largely undefined. Here, we demonstrate that T cell activation increases trafficking via the ER-to-Golgi pathway. To study the functional role of this pathway, we generated mice with a T cell–specific deletion in SEC23B, a core subunit of coat protein complex II (COPII). We found that SEC23B critically regulated the T cell secretome following activation. SEC23B-deficient T cells exhibited a proliferative defect and reduced effector functions in vitro, as well as in experimental models of allogeneic and xenogeneic hematopoietic cell transplantation in vivo. However, T cells derived from 3 patients with congenital dyserythropoietic anemia II (CDAII), which results from Sec23b mutation, did not exhibit a similar phenotype. Mechanistic studies demonstrated that unlike murine KO T cells, T cells from patients with CDAII harbor increased levels of the closely related paralog, SEC23A. In vivo rescue of murine KO by expression of Sec23a from the Sec23b genomic locus restored T cell functions. Together, our data demonstrate a critical role for the COPII pathway, with evidence for functional overlap in vivo between SEC23 paralogs in the regulation of T cell immunity in both mice and humans.

Authors

Stephanie Kim, Rami Khoriaty, Lu Li, Madison McClune, Theodosia A. Kalfa, Julia Wu, Daniel Peltier, Hideaki Fujiwara, Yaping Sun, Katherine Oravecz-Wilson, Richard A. King, David Ginsburg, Pavan Reddy

×

Total citations by year

Year: 2025 2024 2023 2022 Total
Citations: 1 3 2 1 7
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article (7)

Title and authors Publication Year
Disease‐Associated Factors at the Endoplasmic Reticulum–Golgi Interface
Maeda M, Arakawa M, Saito K
Traffic (Copenhagen, Denmark) 2025
ER exit in physiology and disease
Robinson CM, Duggan A, Forrester A
Frontiers in Molecular Biosciences 2024
ER-associated degradation adapter Sel1L is required for CD8+ T cell function and memory formation following acute viral infection
Correa-Medero LO, Jankowski SE, Hong HS, Armas ND, Vijendra AI, Reynolds MB, Fogo GM, Awad D, Dils AT, Inoki KA, Williams RG, Ye AM, Svezhova N, Gomez-Rivera F, Collins KL, O\u2019Riordan MX, Sanderson TH, Lyssiotis CA, Carty SA
Cell Reports 2024
Nlp-dependent ER-to-Golgi transport
Yeerken D, Xiao W, Li J, Wang Y, Wu Q, Chen J, Gong W, Lv M, Wang T, Gong Y, Liu R, Fan J, Li J, Zhang W, Zhan Q
International journal of biological sciences 2024
New Cases and Mutations in SEC23B Gene Causing Congenital Dyserythropoietic Anemia Type II
Musri MM, Venturi V, Ferrer-Cortès X, Romero-Cortadellas L, Hernández G, Leoz P, Ricard Andrés MP, Morado M, Fernández Valle MD, Beneitez Pastor D, Ortuño Cabrero A, Moreno Gamiz M, Senent Peris L, Perez-Valencia AI, Pérez-Montero S, Tornador C, Sánchez M
International journal of molecular sciences 2023
The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization And Ameliorates Immunopathology of Periodontitis.
Song J, Zhang Y, Bai Y, Sun X, Lu Y, Guo Y, He Y, Gao M, Chi X, Heng BC, Zhang X, Li W, Xu M, Wei Y, You F, Zhang X, Lu D, Deng X
2023
Sec23a inhibits the self-renewal of melanoma cancer stem cells via inactivation of ER-phagy
Z Sun, D Liu, B Zeng, Q Zhao, X Li, H Chen, J Wang, H Xing
Cell Communication and Signaling 2022

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 6 X users
21 readers on Mendeley
See more details